DOI QR코드

DOI QR Code

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane

탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향

  • Received : 2020.01.31
  • Accepted : 2020.03.06
  • Published : 2020.04.15

Abstract

In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Keywords

References

  1. Aghajani, M., Wang, M., Cox, L.M., Killgore, J.P., Greenberg, A.R. and Ding, Y. (2018). Influence of support-layer deformation on the intrinsic resistance of thin film composite membranes, J. Membr. Sci., 567, 49-57. https://doi.org/10.1016/j.memsci.2018.09.031
  2. Ausman, K.D., Piner, R, Louie, O. and Ruodff, R.S. (2010). Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes, J. Phys. Chem. Part B, 104, 8911-9815.
  3. Bui, N.N. and McCutcheon, J.R. (2013). Hydrophilic Nanofibers as New Supports for Thin film Composite Membranes for Engineered Osmosis, Environ. Sci. Technol., 47(3), 1761-1769. https://doi.org/10.1021/es304215g
  4. Cheng, M.M., Huang, L.J., Wang, Y.X., Zhao, Y.C., Tang, J.G., Wang, Y., Zhang, Y., Hedayati, M., Kipper, M.J. and Wickramasinghe, S.R. (2019). Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification, J. Mater. Sci., 54(1), 252-264. https://doi.org/10.1007/s10853-018-2828-9
  5. Daramola, M.O., Hlanyane, P., Sadare, O.O., Oluwasina, O.O. and Iyuke, S.E. (2017). Performance of carbon nanotube/polysulfone(CNT/Psf) composite membranes during Oil-Water Mixture separation: Effect of CNT dispersion method, Membr., 7, 14. https://doi.org/10.3390/membranes7010014
  6. Geise, G.M.., Lee, H.S., Miller, D.J., Freeman, B.D., Mcgrath, J.E. and Paul, D.R. (2010). Water purification by membranes: the role of polymer science, J. Polym. Sci. Part B, 48, 1685-1718. https://doi.org/10.1002/polb.22037
  7. Ghosh, A.K. and Hoek, E.M.V. (2009). Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial compostie membranes, J. Membr. Sci., 336, 140-148. https://doi.org/10.1016/j.memsci.2009.03.024
  8. Guillen, G.R., Pan, Y.J., Li, M.H. and Hoek, E.M.V. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Ind. Eng. Chem. Res., 50, 3798-3817. https://doi.org/10.1021/ie101928r
  9. Ham, H.T., Choi, Y.S. and Chung, I.J. (2005). An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters, J. Colloid. Interf. Sci., 286(1), 216-223. https://doi.org/10.1016/j.jcis.2005.01.002
  10. Ismail, A.F., Padaki, M., Hilal, N., Matsuura, T. and Lau, W.J (2015). Thin film composite membrane-Recent development and future potential, desalination, 356, 140-148. https://doi.org/10.1016/j.desal.2014.10.042
  11. Jones, E., Qadir, M., Van Vliet, M.T.H., Smakhtin, V. and Kang, S.M. (2019). The satate of desalination and brine production: A global outlook, Sci. Total. Environ., 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
  12. Khalid, A., Al-Juhni, A.A., Al-Hamouz, O.C., Laoui, T., Khan, Z. and Atieh, M.A. (2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, 134-144. https://doi.org/10.1016/j.desal.2015.04.001
  13. Khoshrou, S., Moghbeli, M.R. and Ghasemi, E. (2016). Polysulfone/carbon nanotubes asymmetric Nanocomposite membrane: Effect of Nanobues surface modification on morphology and water permeability, IRAN. J. Chem. Eng., 12(4), 69-83.
  14. Kim, H.J. Choi, K.Y., Baek, Y.B., Kim, D.G., Shim, J.M., Yoon, J.Y. and Lee, J.C. (2014). High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interface, 6, 2819-2829. https://doi.org/10.1021/am405398f
  15. Kim, S.W., Kim, T.H., Kim, Y.S., Choi., H.S., Lim, H.J., Yang, S.J. and Park, C.R. (2012). Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers, CARBON, 50, 3-33. https://doi.org/10.1016/j.carbon.2011.08.011
  16. Lee, K.P., Armot, T.C. and Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination-development to date and future potential, J. Membr. Sci., 377, 1-22. https://doi.org/10.1016/j.memsci.2011.04.043
  17. Lee, T.H., Lee, M.Y., Lee, H.D., Roh, J.S., Kim, H.W. and Park, H.B. (2017). Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes, J. Membr. Sci., 539, 441-450. https://doi.org/10.1016/j.memsci.2017.06.027
  18. Pendergast, M.T.M., Nyaard, J.M., Ghosh, A.K. and Hoek, E.M.V. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction, Desalination., 261, 255-263. https://doi.org/10.1016/j.desal.2010.06.008
  19. Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review, Desalination, 459, 59-104. https://doi.org/10.1016/j.desal.2019.02.008
  20. Ramon, G.Z., Wong, M.C.Y. and Hoek, E.M.V. (2012). Transport through composite membrane part 1: is there an optimal support membrane?, J. Membr. Sci., 415, 298-305. https://doi.org/10.1016/j.memsci.2012.05.013
  21. Shah, P. and Murthy, C.N. (2013). Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437(15), 90-98. https://doi.org/10.1016/j.memsci.2013.02.042
  22. Sianipar, M., Kim, S.H., Khoiruddin., Iskandar, F. and Wenten, I.G. (2017). Funtionalized carbon nantube (CNT) membrane: progress and challenges, RSC. Adv, 7, 51175-51198. https://doi.org/10.1039/C7RA08570B
  23. Sianipar, M., Kim, S.H., Min, C.S., Tigin, L.D. and Shon, H.K. (2015). Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application, J. Ind. Eng. Chem., 34, 364-373. https://doi.org/10.1016/j.jiec.2015.11.025
  24. Smolders, C.A., Reuvers, A.J., Boom, R.M. and Wienk, I.M. (1992). Microstructures in phase-inversion membrane. Part 1. Formation of macrovoids, J. Membr. Sci., 73, 259-275. https://doi.org/10.1016/0376-7388(92)80134-6
  25. Son, M., Choi, H.G., Liu, L., Celik, E., Park, H.S. and Choi, H.C. (2015). Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination, Chem. Eng. J., 266, 376-384. https://doi.org/10.1016/j.cej.2014.12.108
  26. Sung, J.H., Kim, H.S, Jin, H.J., Choi, H.J. and Chin, I.J. (2004). Nanofibrous membranes prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Composites, Macromol., 37, 9899-9902. https://doi.org/10.1021/ma048355g
  27. Vivekchand, S.R.C., Jayakanth, R., Govindaraj, A. and Rao, C.N.R. (2005). The problem of purifying single-walled carbon nanotubes, Small, 10, 920-232.
  28. Wei, J., Qiu, C., Tang, C.Y., Wang, R. and Fane, A.G. (2011). Synthesis and characterization of flat-sheet thin film composite forward osmosis membrane, J. Membr. Sci., 372(1-2), 292-302. https://doi.org/10.1016/j.memsci.2011.02.013
  29. Wijmans, J.G. and Hao. P.J. (2015). Influence of the porous support on diffusion in composite membranes, J. Membr. Sci., 494, 78-85. https://doi.org/10.1016/j.memsci.2015.07.047
  30. Wu, G., Gan, S., Cui, L. and Xu, Y. (2008). Preparation and charcterization of PES/TiO2 composite membranes, Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
  31. Yakavalangi, M.E., Rimaz, S. and Vatanpour, V. (2017). Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes, J. Appl. Polym. Sci., 134, 44444.
  32. Yan, H., Jian, X.M., Pan, G., Zhang, Y., Shi, Y., G,M. and Liu, Y. (2015). The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes, J. Membr. Sci., 475, 504-510. https://doi.org/10.1016/j.memsci.2014.10.052
  33. Yin, J. and Deng, B. (2015). Polymer-matrix nanocomposite mebranes for water treatment, J. Membr. Sci., 479, 256-275. https://doi.org/10.1016/j.memsci.2014.11.019
  34. Yin, J., Zhu, G. and Deng, B. (2013). Multi-walled carbon nanotubes (MWNTs)/Polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment, J. Membr. Sci., 437, 237-248. https://doi.org/10.1016/j.memsci.2013.03.021
  35. Zarrabi, H., Yekavalangi, M.E., Vatanpour, V., Shockravi, A. and Safarpour, M (2016). Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination, 394, 83-90. https://doi.org/10.1016/j.desal.2016.05.002
  36. Zhang, L., Shi, G.Z., Qiu, S., Cheng, L.H. and Chen, H.L. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desalin. Water Treat., 34, 19-24. https://doi.org/10.5004/dwt.2011.2801