• Title/Summary/Keyword: surface electric resistivity

Search Result 101, Processing Time 0.021 seconds

The Flame Retardent and Electric Properties of Silicone Rubber (실리콘 고무의 내화 및 전기특성)

  • Hong, Sung-Ryool;Lee, Sung-Ill;Kim, Gui-Yeul;Jang, Kyung-Uk;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.69-71
    • /
    • 2003
  • Mechanical Properties, such as tensile strength, elongation, and tear strength, decreased according to increasing the load of ATH, volume resistivity, AC break down strength, and tracking resistance for HVI SC contained ATH treated by vinyl Silane were better than those for HVI SC were contained ATH treated by other surface treatment agent, such as stearic acid and acryl silane.

  • PDF

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns (용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향)

  • Lee, Joo-Yul;Kim, Man;Kim, Deok-Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Preparation and PTC Characteristics of Poly(dimethylsiloxane) Modified EPDM/HDPE Composite (Poly(dimethylsiloxane) 변성 EPDM/HDPE 복합체의 제조와 PTC 특성)

  • Kang, Doo-Whan;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • Maleated ethylene-propylene-diene terpolymer (MEPDM) was prepared from solution polymerization of EPDM and maleic anhydride. MEPDM-grafted-poly (dimethylsiloxane) (PDMS) copolymer (MEPDM-g-PDMS) was prepared from copolymerization of MEPDM with $\alpha$,$\omega$-hydroxyl group terminated PDMS. The MEPDM-g-PDMS was compounded with HDPE and 4-ethoxybenzoic acid modified MWCNT at $180^{\circ}C$ and positive temperature coefficient (PCT) behavior of the MWCNT composite was investigated. Surface modification of MWCNT enabled it to be more uniformly dispersed in polymer matrix and decreased aggregation of particles. Electrical resistivity of the composite was abruptly increased at melting temperature and PTC intensity of 2.3 was obtained at 15% loading of surface modified CNT.

Study on Nickel Plating of Leadframe using Pulse Technique (펄스법을 이용한 리드프레임의 니켈도금에 관한 연구)

  • Chung W.S.;Min B.S.;Lim J.J.;Chung U.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.242-250
    • /
    • 2003
  • Electrodeposition of Ni was carried out on copper substrate from Ni Sulfamate bath by DC and high frequency pulse current. During the electroplating, bath temperature was steady $60^{\circ}C$ , agitation was applied. Morphology and surface roughness of electrodeposits was investigated with the AFM. Crystalline structure of electrodeposits was investigated with XRD. Also, surface electric resistivity was investigated with 4-point probe. The result of crystalline structure by X-ray diffractometer, in the case of DC, <200> direction was dominant growing direction. But in the case of PC, the ratio of <200> direction vs. other direction decreased. As the pulse frequency increased, the enhanced properties of deposits were shown. With increasing frequency, the degree of surface properties increased DC more than that of PC, eg surface morphology, roughness and the degree of compactness of grains. With increasing duty cycle, the surface properties such as the degree of the morphology, roughness and electroconductivity was deteriorated.

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Characteristics and Corrosion Behaviors of Quaternary (Co/Ni/P/Mn) Electroless Plating (4성분 무전해도금(Co/Ni/P/Mn)의 특성 및 부식거동)

  • Hur, Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • The quaternary alloy (Co/Ni/P/Mn) coatings were prepared using electroless plating on the polypropylene. Compositions of the quaternary alloys (Co/Ni/P/Mn) were controlled by the amount of agents. The composition by EDS, morphology with SEM, film thickness, and surface electrical resistance of the samples were measured. Higher phosphorous content samples give larger electric resistance, thus a relationship is admitted between P content and electric resistance. The corrosivity of the coatings were evaluated by electrochemical methods in the 3.5 wt% NaCl and 5.0 wt% $H_2SO_4$ solutions, respectively. It was concluded that phosphorous addition enhances resistivity in the corrosion.

Preparation of ITO Thin Films by FTS{Facing Targets Sputtering) Method (FTS법을 이용한 ITO박막의 제작)

  • Kim, Geon-Hi;Keum, Min-Jong;Kim, Han-Ki;Son, In-Hwan;Jang, Kyung-Wook;Lee, Won-Jae;Choi, Hyung-Wook;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1230-1233
    • /
    • 2004
  • The ITO thin films were prepared by the FTS(Facing Targets Sputtering) system. The ITO thin films are deposited by changing the input current and working gas pressure. Then, electric characteristics, transmittance and surface roughness of ITO thin films were measured by Hall effect measurement, UV-VIS spectrometer and AFM. As a result, the ITO thin film was fabricated with resistivity 6xl0$^{-4}$ Ωㆍcm, carrier mobility 52.11 $\textrm{cm}^2$/Vㆍsec, carrier concentration 1.72 x $10^{20}$ $cm^{-3}$ transmittance over 85 % of ITO film at working gas pressure 1 mTorr and input current 0.6 A.

Effect of PEO Process Conditions on Oxidized Surface Properties of Mg alloy, AZ31 and AZ91. I. Applied Voltage and Time (PEO 처리조건에 따른 마그네슘 합금 AZ31과 AZ91의 산화표면피막특성에 대한 연구. I. 전압과 시간의 영향)

  • Ham, Jae-Ho;Jeon, Min-Seok;Kim, Yong-Nam;Shin, Min Chul;Kim, Kwang Youp;Kim, Bae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.218-224
    • /
    • 2016
  • The surface of Mg alloy, AZ31 and AZ91, were treated by PEO (plasma electrolytic oxidation) in Na-P system electrolyte, with different applied voltage and time. Thickness, roughness and X-ray crystallographic analysis revealed several results. The more applied time and voltage of PEO treated, the thicker oxidized surface coating layer were covered. And surface roughness increased with the thickness of oxidized layer. It was thought that when oxide layer grew, resistivity and breakdown voltage increased with the thickness of layer, and then, the energy of micro plasma need to be higher then before. So, it made craters and pores of surface become greater, which were responsible for the coarse surface.

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.131-134
    • /
    • 2009
  • The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF