• Title/Summary/Keyword: surface barrier

Search Result 938, Processing Time 0.031 seconds

Electric characteristics of Schottky barrier Field Effect Transistors with Halogen and Deuterium lamp (쇼트키 장벽 트랜지스터의 빛 조사에 따른 전기적 특성 연구)

  • Hwang, Min-Young;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.348-348
    • /
    • 2010
  • Nanostructures have great potential in various devices due to the their promising electronic and optical properties. Nano-patterned the front surface of a solar cell generally results in improved performance, mostly due to an increase in the short-circuit current by the incident photons strike the cell surface at an angle. In this work, we investigate AFM-assisted nano-patterned field effect transistors (FETs) with vairous silicon oxide distance value D, from ${\sim}0.5{\mu}m$ to $1{\mu}m$. Also, we compared the electro-optical characteristics of the patterned FETs and the non-patterned FETs (reference device) based on both 2-dimensional simulation and experimental results for the wavelength from 100nm to 900nm. In addition, we report electric characteristics for illuminated surface in schottky barrier field effect transistors (SB-FETs).

  • PDF

Vertical Diffusion of Ammonia Into Amorphous Ice Sturcture

  • Kim, Yeong-Sun;Mun, Ui-Seong;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.280-280
    • /
    • 2012
  • We examined ammonia diffusion on the surface of amorphous ice film through the measurement of decreasing residual quantity of $NH_3$ molecules compared to $H_2O$. The populations of $NH_3$ molecules on the surface of amorphous ice were monitored by using the techniques of temperature programmed reactive ion scattering (TPRIS) method. The ratio of intensity between ammonia and water was examined as a function of time at controlled temperature. When ammonia molecules were externally added onto an ice film at a temperature of 80 K, ammonia coverage with regard to ice was 0.12-0.16 ML. The intensity of ammonia molecules on the surface of ice decreased as time increased and the extent of decreased intensity of ammonia increased as controlled temperature increased. Moreover, energy barrier was estimated to be $51kJmol^{-1}$ on amorphous ice film. The results of the experiment indicate that ammonia molecules have a property of vertical diffusion into amorphous ice and the energy barrier of ammonia diffusion into bulk of ice is higher than that of hydrogen bonding.

  • PDF

A Study on the Manufacturing of Porous Membrane for Separation of Gas Mixture by Al Anodizing Method (Al장극산화법에 의한 반휴분이용 다공성 격영의 제조에 관한 연구)

  • 윤은열;라경용
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.2
    • /
    • pp.69-76
    • /
    • 1982
  • With a view to manufacturing membranes for separation of gas mixtures, Al foils were anodized in a 2% oxalic-acid electrolyte at 40V and 80V. When anodizing was completed and Barrier layer existed at the extreme back site of the foil, the anodized foil was made to react with only electrolyte, with switching off the electric power. When the size and density of pores were changed through voltage change, the membr-anes did not show large difference in the permeability. Reacting with electrolyte, the existing Barrier layer turns into porous layer. During this process, several small pores grow from one relatively large pore, getting to the back site. The number and size of the small pores getting to the back surface increase as time passing. This change of Barrier layer into porous layer is thought to be directly related to the permeability change of the membranes. The selectivity of an anodized Al membrane was not related to the voltage change, and was high, being similar to the theoretical selctivity of metallic membranes, according to my observation.

  • PDF

A Study on V-I characteristics depend on a distance between semiconductor-semiconductor (반도체-반도체 사이의 거리 변화에 따른 전압-전류 특성 연구)

  • Kim, Hye-Jeong;Kim, Jeong-Ho;Cheon, Min-U;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.52-56
    • /
    • 2004
  • The movement of electron in the semiconductor-gap-semiconductor was observed by the variation of V-I characteristic as a distance two ZnO(1010) single crystals. When the resistance between two crystals was $10^2{\sim}10^4{\Omega}$, V-I characteristics had the pattern of the field emission or ohmic contact. On the other hand, when the resistance was larger than $10^7{\Omega}$ by increasing the distance between two crystals, the effect of surface barrier was prominent. This result leads to the conclusion that both the field emission (or ohmic contact) and the surface barrier effect including the tunneling have the influence on V-I characteristics of mechanically contacted crystals.

  • PDF

An Evaluation on High Temperature Oxidation Resistance of EB-PVD Thermal Barrier Coatings (전자빔 증착법에 의한 열차폐코팅의 고온 내산화성 평가)

  • Kim, Jong-H.;Jeong, Se-I.;Lee, Ku-H.;Lee, Eui-Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • Failure mechanisms of electron beam physical vapor deposited thermal barrier coatings(EB-PVD TBCs) that occur during thermal cyclic oxidation were investigated. The investigations include microstructural degradation of NiCrAIY bond coat, thermally grown oxides(TGOs) along the ceramic top coat-substrate interface and fracture path within TBCs. The microstructural degradation of the bond coat during cyclic oxidation created Al depleted zones, resulting in reduction of NiAl and ${\gamma}$-Ni solid solution phase. It was observed that the fracture took placed primarily within the TGOs or at the interfaces between TGOs and bond coat.

Fabrication of Organic-Inorganic Superlattice Films Toward Potential Use For Gas Diffusion Barrier

  • Yun, Gwan-Hyeok;Muduli, Subas Kumar;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.394-394
    • /
    • 2012
  • We fabricated organic-inorganic superlattice films using molecular layer deposition (MLD) and atomic layer deposition (ALD). The MLD is a gas phase process in the vacuum like to atomic layer deposition (ALD) and also relies on a self-terminating surface reaction of organic precursor which results in the formation of a monolayer in each sequence. In the MLD process, 'Alucone' is very famous organic thin film fabricated using MLD. Alucone layers were grown by repeated sequential surface reactions of trimethylaluminum and ethylene glycol at substrate temperature of $80^{\circ}C$. In addition, we developed UV-assisted $Al_2O_3$ with gas diffusion barrier property better than typical $Al_2O_3$. The UV light was very effective to obtain defect-free, high quality $Al_2O_3$ thin film which is determined by water vapor transmission rate (WVTR). Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of each organic, inorganic film. Composition of the organic films was confirmed by infrared (IR) spectroscopy. Ultra-violet (UV) spectroscopy was employed to measure transparency of the organic-inorganic superlattice films. WVTR is calculated by Ca test. Organic-inorganic superlattice films using UV-assisted $Al_2O_3$ and alucone have possible use in gas diffusion barrier for OLED.

  • PDF

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization (전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구)

  • Min Gi, Chu;Ji Hong, Chung;Dong Kee, Sohn;Han Seo, Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Study on electrical characteristics of plastic ITO film with bending on multi-barrier films (다층박막을 이용한 플라스틱 ITO 필름의 bending에 따른 전기적 특성 연구)

  • Park, Jun-Baek;Lee, Yun-Gun;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Park, Sung-Kyu;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.177-180
    • /
    • 2003
  • We investigated transmittance, surface characteristics, and resistivity according to bending of ITO(indium tin oxide) film with four other multi-barrier film. Transmission data of ITO film with four ITO films showed there was about large 90% transmission above 550nm wavelength at three multi-barrier structures. But, both-side hard coated structure showed relatively low 75% transmission above 550nm wavelength. And, surface images measured from SEM(scanning electron microscope) showed both-side hard coated structure have a tendency of more roughness. Also, resistivity change of four other multi-barrier film showed there was the lowest change at one-side hardcoated structure. Subsequently, with result of resistivity change according to position, we knew the resistivity change of the center increased rapidly than that of the edge.

  • PDF