An Evaluation on High Temperature Oxidation Resistance of EB-PVD Thermal Barrier Coatings

전자빔 증착법에 의한 열차폐코팅의 고온 내산화성 평가

  • Kim, Jong-H. (Department of Advanced Materials Engineering, Andong National University) ;
  • Jeong, Se-I. (Department of Advanced Materials Engineering, Andong National University) ;
  • Lee, Ku-H. (Surface Technology Research Center, Korea Institute of Machinery and Materials) ;
  • Lee, Eui-Y. (Department of Advanced Materials Engineering, Andong National University)
  • 김종하 (안동대학교 신소재공학부) ;
  • 정세일 (안동대학교 신소재공학부) ;
  • 이구현 (한국기계연구원 재료기술연구소 표면기술연구센터) ;
  • 이의열 (안동대학교 신소재공학부)
  • Published : 2006.08.30

Abstract

Failure mechanisms of electron beam physical vapor deposited thermal barrier coatings(EB-PVD TBCs) that occur during thermal cyclic oxidation were investigated. The investigations include microstructural degradation of NiCrAIY bond coat, thermally grown oxides(TGOs) along the ceramic top coat-substrate interface and fracture path within TBCs. The microstructural degradation of the bond coat during cyclic oxidation created Al depleted zones, resulting in reduction of NiAl and ${\gamma}$-Ni solid solution phase. It was observed that the fracture took placed primarily within the TGOs or at the interfaces between TGOs and bond coat.

Keywords

References

  1. B. A. Movchan, K. Yu. Yakovchuk, Surf. & Coat. Technol., 188-189 (2004) 85 https://doi.org/10.1016/j.surfcoat.2004.08.006
  2. Dongming Zhu, Sung R. Choi, Robert A. Miller, Surf. & Coat. Technol., 188-189 (2004) 146 https://doi.org/10.1016/j.surfcoat.2004.08.017
  3. A. Portinha, V. Teixeira, Surf. & Coat. Technol., 188-189 (2004) 120 https://doi.org/10.1016/j.surfcoat.2004.08.014
  4. Maurice Gell, Liangde Xie, Eric H. Jordan, Nitin P. Paditure, Surf. & Coat. Technol., 188-189 (2004) 01 https://doi.org/10.1016/j.surfcoat.2004.07.123
  5. Maurice Gell, Liangde Xie, Xinqing Ma, Eric H. Jordan, Nitin P. Paditure, Surf. & Coat. Technol., 177-178 (2004) 97
  6. Kunihiko Wada, Norio Yamaguchi, Hideaki Matsubara, Surf. & Coat. Technol., 191 (2005) 367 https://doi.org/10.1016/j.surfcoat.2004.02.008
  7. Liangde Xie, Xinqing Ma, Eric H. Jordan, Nitin P. Paditure, Danny T. Xio, Maurice Gell, Mater. Sci. Eng. A, 362 (2003) 204 https://doi.org/10.1016/S0921-5093(03)00617-8
  8. R. G. Wellman, H. Tourmente, S. Impey. J. R. Nicholls, Surf. & Coat. Technol., 188-189 (2004) 79 https://doi.org/10.1016/j.surfcoat.2004.08.018
  9. V. K. Tolpygo, D. R. Clarke, Acta Mater., 48 (2000) 3283 https://doi.org/10.1016/S1359-6454(00)00156-7
  10. O. Unal, T. E. Mitchell, A. H. Heuer, Journal of American Ceramic Society, 77(4) (1994) 984 https://doi.org/10.1111/j.1151-2916.1994.tb07256.x
  11. Y. H. Sohn, R. R. Biederman, R. D. Sisson, Jr., Thin Solid Films, 250 (1994) 1 https://doi.org/10.1016/0040-6090(94)90155-4
  12. P. M. Pierz, Surf. & Coat. Technol., 61 (1993) 60 https://doi.org/10.1016/0257-8972(93)90203-Z
  13. F. C. Toriz, A. B. Thakker, S. K. Gupta, Surf. & Coat. Technol., 40 (1989) 161 https://doi.org/10.1016/0257-8972(89)90051-0
  14. S. Stephan, Thin Solid Films, 182 (1989) 121 https://doi.org/10.1016/0040-6090(89)90250-2
  15. A. S. James, Surf. & Coat. Technol., 41 (1990) 305 https://doi.org/10.1016/0257-8972(90)90141-X
  16. G. Jiacheng, Z. Yaping, Surf. & Coat. Technol., 63 (1994) 93 https://doi.org/10.1016/S0257-8972(05)80012-X
  17. P. Scardi, L. Lutterotti, Surf. & Coat. Technol., 61 (1993) 52 https://doi.org/10.1016/0257-8972(93)90202-Y