• 제목/요약/키워드: superstability of functional equations

검색결과 15건 처리시간 0.025초

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

SUPERSTABILITY OF THE p-RADICAL TRIGONOMETRIC FUNCTIONAL EQUATION

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.765-774
    • /
    • 2021
  • In this paper, we solve and investigate the superstability of the p-radical functional equations $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}f(x)g(y),\\f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)f(y),$$ which is related to the trigonometric(Kim's type) functional equations, where p is an odd positive integer and f is a complex valued function. Furthermore, the results are extended to Banach algebras.

THE STABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONS III

  • Kim, Gwang Hui
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.465-476
    • /
    • 2007
  • The aim of this paper is to investigate the stability problem bounded by function for the generalized sine functional equations as follow: $f(x)g(y)=f(\frac{x+y}{2})^2-f(\frac{x+{\sigma}y}{2})^2\\g(x)g(y)=f(\frac{x+y}{2})^2-f(\frac{x+{\sigma}y}{2})^2$. As a consequence, we have generalized the superstability of the sine type functional equations.

  • PDF

TRANSFERRED SUPERSTABILITY OF THE p-RADICAL SINE FUNCTIONAL EQUATION

  • Kim, Gwang Hui;Roh, Jaiok
    • 충청수학회지
    • /
    • 제35권4호
    • /
    • pp.315-327
    • /
    • 2022
  • In this paper, we investigate the transferred superstability for the p-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from the p-radical functional equations: $$f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)g(y),\;\\f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)h(y),$$ where p is an odd positive integer, λ is a positive real number, and f is a complex valued function. Furthermore, the results are extended to Banach algebras. Therefore, the obtained result will be forced to the pre-results(p=1) for this type's equations, and will serve as a sample to apply it to the extension of the other known equations.

THE STABILITY OF PEXIDERIZED COSINE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.103-114
    • /
    • 2008
  • In this paper, we investigate the superstability problem for the pexiderized cosine functional equations f(x+y) +f(x−y) = 2g(x)h(y), f(x + y) + g(x − y) = 2f(x)g(y), f(x + y) + g(x − y) = 2g(x)f(y). Consequently, we have generalized the results of stability for the cosine($d^{\prime}Alembert$) and the Wilson functional equations by J. Baker, $P.\;G{\check{a}}vruta$, R. Badora and R. Ger, and G.H. Kim.

  • PDF

ON THE SUPERSTABILITY OF THE p-RADICAL SINE TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권4호
    • /
    • pp.387-398
    • /
    • 2021
  • In this paper, we will find solutions and investigate the superstability bounded by constant for the p-radical functional equations as follows: $f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=\;\{(i)\;f(x)f(y),\\(ii)\;g(x)f(y),\\(iii)\;f(x)g(y),\\(iv)\;g(x)g(y).$ with respect to the sine functional equation, where p is an odd positive integer and f is a complex valued function. Furthermore, the results are extended to Banach algebra.

COCYCLE EQUATIONS VIA COCHAINS AND HYPERSTABILITY OF RELATED FUNCTIONAL EQUATIONS

  • Young Whan Lee
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.865-876
    • /
    • 2023
  • This paper presents properties of the cocycle equations via cochains on a semigroup. And then we offer hyperstability results of related functional equations using the properties of cocycle equations via cochains. These results generalize hyperstability results of a class of linear functional equation by Maksa and Páles. The obtained results can be applied to obtain hyperstability of various functional equations such as Euler-Lagrange type quadratic equations.

ON THE STABILITY OF PEXIDER TYPE TRIGONOMETRIC FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.369-378
    • /
    • 2008
  • The aim of this paper is to study the stability problem for the pexider type trigonometric functional equation f(x + y) − f(x−y) = 2g(x)h(y), which is related to the d'Alembert, the Wilson, the sine, and the mixed trigonometric functional equations.

  • PDF