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TRANSFERRED SUPERSTABILITY OF THE p-RADICAL

SINE FUNCTIONAL EQUATION

Gwang Hui Kim* and Jaiok Roh**

Abstract. In this paper, we investigate the transferred superstability
for the p-radical sine functional equation
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from the p-radical functional equations:
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where p is an odd positive integer, λ is a positive real number, and f

is a complex valued function. Furthermore, the results are extended to

Banach algebras.
Therefore, the obtained result will be forced to the pre-results(p=1)

for this type’s equations, and will serve as a sample to apply it to the
extension of the other known equations.

1. Introduction

The superstability of the cosine (d’Alembert) functional equation

(C) f(x+ y) + f(x− y) = 2f(x)f(y)

was proved by Baker [4] in 1980.
The cosine (d’Alembert) functional equation (C) was generalized to the

following:

f(x+ y) + f(x− y) = 2f(x)g(y),(W )

f(x+ y) + f(x− y) = 2g(x)f(y),(K)

in which (W ) is called the Wilson equation, and (K) arised by Kim was ap-
peared in Kannappan and Kim’s paper ([8]).
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The superstability of the cosine (C), Wilson (W ) and Kim (K) functional
equations were founded in Badora, Kannappan and Kim ([2, 8, 16]).

The superstability by constant bounded of the sine functional equation

(S) f(x)f(y) = f

(
x+ y

2

)2

− f

(
x− y

2

)2

,

is investigated by P.W. Cholewa [5], and is improved in R. Badora and R. Ger
[3], and G. H. Kim [13], [15].

In 2009, Eshaghi Gordji and Parviz [7] introduced the radical functional
equation

(R) f
(√

x2 + y2
)
= f(x) + f(y)

related to the quadratic functional equation.

Recently, Almahalebi et al.[1] obtained the superstability in Hyer’s sense
for the p-radical functional equations related to Wilson equation and Kim’s
equation.

If the cosine functional equation (C) and the sine functional equation (S)
is expressed in the concept of the p-radical function, respectively, that it is as
following:

f
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√
xp + yp

)
+ f

(
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√
xp − yp

)
= 2f(x)f(y),(Cr)
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)2

= f(x)f(y).(Sr)

Namely, applying p = 1 in (Cr) and (Sr), it implies (C) and (S).

The aim of this paper is to investigate the transferred superstability of the
p-radical sine functional equation (Sr) related to the sine functional equation
from the Pexider type p-radical functional equations

f
(

p
√
xp + yp

)
+ f

(
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√
xp − yp

)
= λg(x)g(y),(Kr

gg)

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= λg(x)h(y).(Kr

gh)

Furthermore, the results are extended to Banach spaces.

In this paper, let R be the field of real numbers, R+ = [0,∞) and C be the
field of complex numbers. We may assume that f is a nonzero function, ε is a
nonnegative real number, φ : R → R+ is a given nonnegative function, and p
is an odd nonnegative integer.
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Let us denote the functional equations for the p-radical functional equations
related to Wilson and Kim’s equations as follows:
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= 2g(x)f(y).(Kr)
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)
+ f
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= λg(x)f(y).(Kr

λ)

f(x+ y) + f(x− y) = λf(x)f(y),(Cλ)

f(x+ y) + f(x− y) = λf(x)g(y),(Wλ)

f(x+ y) + f(x− y) = λg(x)f(y).(Kλ)

2. Transferred superstability for the p-radical sine functional equa-
tion (Sr).

In this section, we investigate the transferred superstability for p-radical
sine functional equation (Sr) from the p-radical functional equations (Kr

gg)
and (Kr

gh).

In paper [9] , we can see a solution of the p-radical functional equations of
the cosine(Cr), Wilson(W r) and Kim(Kr) related to sine (Sr). In the following
lemma, we obtain a solution of the p-radical sine functional equation (Sr).

Lemma 2.1. A function f : R → C satisfies (Sr) if and only if f(x) =
sin(xp) = F (xp) for all x ∈ R, where F is a solution of (S).

Proof. Namely,
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)2

= f(x)f(y)

= sin (xp) sin (yp) = F (xp)F (yp) , for all x,y ∈ R.

Theorem 2.2. Assume that f, g : R → C satisfy the inequality

(2.1) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)g(y)| ≤ φ(x).

Then, either g (with g(0) = 0 or f(−x) = −f(x)) is bounded or g satisfies
(Sr).
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Proof. (i) Assume that g is unbounded. Then we can choose {yn} such that
0 ̸= |g(yn)| → ∞ as n → ∞.

Putting y = yn in (2.1) and dividing both sides by λg(yn), we have

(2.2)

∣∣∣∣∣∣
f
(

p
√

xp + ypn
)
+ f

(
p
√
xp − ypn

)
λg(yn)

− g(x)

∣∣∣∣∣∣ ≤ φ(x)

λg(yn)
.

As n → ∞ in (2.2), we get

g(x) = lim
n→∞

f
(

p
√
xp + ypn

)
+ f

(
p
√
xp − ypn

)
λg(yn)

(2.3)

for all x ∈ R.
Replacing y by p

√
yp + ypn and p

√
yp − ypn in (2.1), we obtain

(2.4)∣∣∣∣(f ( p

√
xp + (yp + ypn)

)
+f

(
p

√
xp − (yp + ypn)

)
−λg(x)g( p

√
yp + ypn)

∣∣∣∣ ≤ φ(x),

(2.5)∣∣∣∣(f ( p

√
xp + (yp − ypn)

)
+f

(
p

√
xp − (yp − ypn)

)
−λg(x)g( p

√
yp − ypn)

∣∣∣∣ ≤ φ(x),

for all x, y, yn ∈ R. By (2.4) and (2.5), we obtain

∣∣∣∣f
(

p
√
(xp + yp) + ypn

)
+ f

(
p
√
(xp + yp)− ypn

)
λg(yn)

(2.6)

+
f
(

p
√

(xp − yp) + ypn
)
+ f

(
p
√

(xp − yp)− ypn
)

λg(yn)

− λg(x)
g( p
√

yp + ypn) + g( p
√
yp − ypn)

λg(yn)

∣∣∣∣ ≤ 2φ(x)

λg(yn)

for all x, y ∈ R and every n ∈ N.
In inequality (2.6), taking the limit as n −→ ∞ with the using of (2.3),

then, we conclude that, for every x ∈ R, there exists the limit

(2.7) L1(y) := lim
n→∞

g( p
√

yp + ypn) + g( p
√
yp − ypn)

g(yn)

where the obtained function L1 : R → C satisfies the equation

(2.8) g( p
√
xp + yp) + g( p

√
xp − yp) = g(x)L1(y) ∀x, y ∈ R.

First, let us consider the case g(0) = 0, then it forces by (2.8) that g is odd.
Putting y = x in (2.8), we get

(2.9) g(
p
√
2x) = g(x)L1(x), ∀x ∈ R.
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From (2.8), the oddness of g and (2.9), we obtain the equation

g( p
√
xp + yp)2 − g( p

√
xp − yp)2 = g(x)L1(y)[g(

p
√
xp + yp)− g( p

√
xp − yp)]

= g(x)[g( p
√
xp + 2yp)− g( p

√
xp − 2yp)]

= g(x)[g( p
√
2yp + xp) + g( p

√
2yp − xp)]

= g(x)g(
p
√
2y)L1(x)

= g(
p
√
2x)g(

p
√
2y),(2.10)

that holds true for all x, y ∈ R.
By putting x = x

p√2
, y = y

p√2
in the inequality (2.10), then, it states nothing

else but (Sr).

(ii) For next case f(−x) = −f(x), it is enough to show that g(0) = 0.
Suppose that this is not the case. Then, we may assume that g(0) = c :
constant.

Putting x = 0 in (2.1), from the above assumption, we obtain the inequality

|g(y)| ≤ φ(0)

λc
∀ y ∈ G.

This inequality means that g is globally bounded, which is a contradiction
by unboundedness assumption. Thus the claimed g(0) = 0 holds, so the proof
is completed.

Theorem 2.3. Assume that f, g : R → C satisfy the inequality

(2.11) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)g(y)| ≤ φ(y)

Then, either g (with g(0) = 0) is bounded or g satisfies (Sr).

Proof. The proof follows from Theorem 2.2. Let us choose {xn} in R such
that 0 ̸= |g(xn))| → ∞ as n → ∞.

Taking x = xn (with n ∈ N) in (2.11), dividing both sides by |λg(xn)|, and
passing to the limit as n → ∞, we obtain that

(2.12) g(y) = lim
n→∞

f
(

p
√
xp
n + yp

)
+ f

(
p
√
xp
n − yp

)
λg(xn)

for all y ∈ R.
Replace (x, y) by ( p

√
xp
n + yp, x) and replace (x, y) by ( p

√
xp
n − yp, x) in

(2.11). Thereafter we go through the same procedure as in (2.4) ∼ (2.6) of
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Theorem 2.2. Then we obtain∣∣∣∣f
(

p
√

(xp
n + yp) + xp

)
+ f

(
p
√
(xp

n + yp)− xp
)

λg(xn)

+
f
(

p
√
(xp

n − yp) + xp
)
+ f

(
p
√
(xp

n − yp)− xp
)

λg(xn)

− λ
g( p
√
xp
n + yp) + g( p

√
xp
n − yp)

λg(xn)
g(x)

∣∣∣∣ ≤ 2φ(x)

λg(xn)
.(2.13)

In inequality (2.13), taking the limit as n −→ ∞ with the using of (2.12),
then, we conclude that, for every x ∈ R, there exists the limit

(2.14) L2(y) := lim
n→∞

g( p
√
xp
n + yp) + g( p

√
xp
n − yp)

g(xn)

where the obtained function L2 : R → C satisfies the equation

(2.15) g( p
√
xp + yp) + g( p

√
xp − yp) = g(x)L2(y) ∀x, y ∈ R,

which is not other than (2.8).
The assumption g(0) = 0 in (2.15) forces that g is odd.
Hence, since the remainder of the proof is the same procedure as that (2.9)

and (2.10) of Theorem 2.2, which completes the proof.

The following corollaries follow immediately from Theorems 2.2 and 2.3.

Corollary 2.4. Assume that f, g : R → C satisfy the inequality

(2.16) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)g(y)| ≤ ε.

Then, either g (with g(0) = 0 or f(−x) = −f(x)) is bounded or g satisfies
(Sr).

By a similar process of the proof of Theorems 2.2, 2.3, we can prove the
following theorem.

Theorem 2.5. Assume that f, g, h : R → C satisfy the inequality

(2.17) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)h(y)| ≤ φ(x).

Then, either h with g(0) = 0 is bounded or g satisfies (Sr),

Proof. Assume that h with g(0) = 0 is unbounded. By the same procedure
as (2.2) ∼ (2.3) of Theorem 2.2, we get

g(x) = lim
n→∞

f
(

p
√
xp + ypn

)
+ f

(
p
√
xp − ypn

)
λh(yn)

(2.18)

for all x ∈ R.
Replacing y by p

√
yp + ypn and p

√
yp − ypn in (2.17).
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Thereafter we go through the same procedure as in (2.4) ∼ (2.6) of Theorem
2.2. Namely, for it, addition, dividing by λh(yn),

This implies that

∣∣∣∣f
(

p
√
(xp + yp) + ypn

)
+ f

(
p
√

(xp + yp)− ypn
)

λh(yn)

+
f
(

p
√
(xp − yp) + ypn

)
+ f

(
p
√
(xp − yp)− ypn

)
λh(yn)

(2.19)

− λg(x)
h( p
√
yp + ypn) + h( p

√
yp − ypn)

λh(yn)

∣∣∣∣ ≤ 2φ(x)

λh(yn)

for all x, y, yn ∈ R.
In inequality (2.19), taking the limit as n −→ ∞ with the using of (2.18),

then, we conclude that, for every x ∈ R, there exists the limit

(2.20) L3(y) := lim
n→∞

h( p
√

yp + ypn) + h( p
√

yp − ypn)

h(yn)

where the obtained function L3 : R → C satisfies the equation

(2.21) g( p
√
xp + yp) + g( p

√
xp − yp) = g(x)L3(y) ∀x, y ∈ R.

From the assumption g(0) = 0, by (2.15) g is odd.

Thus, the remaining proof goes through the same procedure as after (2.9)
and (2.10) in Theorem 2.2.

Theorem 2.6. Assume that f, g, h : R → C satisfy the inequality

(2.22) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)h(y)| ≤ φ(y).

Then, either g with h(0) = 0 is bounded or h satisfies (Sr),

Proof. Assume that g with h(0) = 0 is unbounded. By the same procedure
as (2.2) ∼ (2.3) of Theorem 2.3, we deduce

(2.23) h(y) = lim
n→∞

f
(

p
√
xp
n + yp

)
+ f

(
p
√
xp
n − yp

)
λg(xn)

for all y ∈ R.
Replace (x, y) by ( p

√
xp
n + yp, x) and replace (x, y) by ( p

√
xp
n − yp, x) in

(2.23). Thereafter we go through the same procedure as in (2.4) ∼ (2.6) of



322 Gwang Hui Kim and Jaiok Roh

Theorem 2.2. Then we obtain∣∣∣∣f
(

p
√

(xp
n + yp) + xp

)
+ f

(
p
√
(xp

n + yp)− xp
)

λg(xn)

+
f
(

p
√
(xp

n − yp) + xp
)
+ f

(
p
√
(xp

n − yp)− xp
)

λg(xn)
(2.24)

− λ
g( p
√

xp
n + yp) + g( p

√
xp
n − yp)

λg(xn)
h(x)

∣∣∣∣ ≤ 2φ(x)

λg(xn)
.

Take the limit as n −→ ∞ with the use of |g(xn)| → ∞ in (2.24). Then, we
conclude that, for every x ∈ R, there exists the limit

(2.25) L4(y) :=
g( p
√
xp
n + yp) + g( p

√
xp
n − yp)

g(xn)

where the obtained function L4 : R → C satisfies the equation

(2.26) h( p
√
xp + yp) + h( p

√
xp − yp) = h(x)L4(y) ∀x, y ∈ R.

In here, we can see that the obtained equation (2.26) is none other than
(2.8). From the assumption h(0) = 0, by (2.15) h is odd.

Thus, the remaining proof goes through the same procedure as after (2.9)
and (2.10) in Theorem 2.2.

The following corollaries follow from Theorems 2.5 and 2.6.

Corollary 2.7. [Theorem 1, [9]] Assume that f, g : R → C satisfy the
inequality

(2.27) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)f(y)| ≤ φ(x)

Then, either f is bounded or g satisfies (Cr
λ),

Proof. Applying h to f in (2.17), then (2.18) and (2.19) imply immediately
that g satisfies (Cr

λ).

Corollary 2.8. [Theorem 1, [9]] Assume that f, g : R → C satisfy the
inequality

(2.28) |f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)f(y)| ≤ φ(y) and φ(x).

Then, either g(or f) is bounded or g satisfies (Cr
λ), and f and g satisfy (Kr

λ)
and (W r

λ).

Proof. Let g be unbounded. We can show that f (or g) is unbounded if and
only if g (or f) is also unbounded (see, Theorem 1,[9]). Hence, we can apply
Corollary 2.7, it implies that g(or f) is bounded or g satisfies (Cr

λ).

Next, (i) replace x by p
√
xp
n + xp, x) and p

√
xp
n − xp in (2.28), respectively.

(ii) replace (x, y) by ( p
√

xp
n + yp, x) and replace (x, y) by ( p

√
xp
n − yp, x) in

(2.28), respectively.
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Then, applying the above result, due to replaced h by f in (2.25) to (2.26),
the remainder also arrives smoothly.

Corollary 2.9. [Theorem 2, [9]] Assume that f, g : R → C satisfy the
inequality

|f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λf(x)g(y)| ≤

{
(i) φ(y)

(ii) φ(x) and φ(y).

Then
(i) either f is bounded or g satisfies (Cr

λ),
(ii) either g(or f) is bounded or g satisfies (Cr

λ), and f and g satisfy (Kr
λ)

and (W r
λ).

Proof. Replacing g by f and h by g in Theorems (2.5) and (2.6), then it is
completed by the same process as Corollaries (2.8) and (2.9).

Corollary 2.10. Assume that f, g : R → C satisfy the inequality

|f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λf(x)f(y)| ≤


(i) φ(x),

(ii) φ(y),

(iii) ε.

Then either f is bounded or f satisfies (Cr
λ),

Proof. Replacing g by f in Corollaries (2.8) or (2.9).

Remark 2.11. In all results, applying p = 1 or λ = 2, one can obtain (C),
(W ), (K), (Cλ), (Wλ), (Kλ) (C

r), (W r), (Kr). Hence they can be applied to
stability results of the cosine, Wilson, Kim, trigonometric functional eqautions,
etc. See Badora [2], Badora and Ger [3], Baker [4], Fassi, et al.[6], Kannappan
and Kim [8], Kim [11, 16], and Almahalebi, et al.[1].

3. Extension to Banach algebras

In this section, all results in Section 2 will be extended to Banach algebras.
Since the same applies to all results, the main theorems 2.5 and 2.6 are only
grouped together and the rest of the results will be omitted.

Theorem 3.1. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra.
Assume that f, g, h : R → E satisfy the inequality

(3.1) ∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)h(y)∥ ≤

{
(i) φ(x)

(ii) φ(y).

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ h with g(0) = 0 is unbounded, then g satisfies (Sr).
(ii) If z∗ ◦ g with h(0) = 0 is unbounded, then h satisfies (Sr).
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Proof. Assume that (3.5) holds and let z∗ ∈ E∗ be a linear multiplicative
functional. Since ∥z∗∥ = 1, for all x, y ∈ R, we have

φ(x) ≥ ∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)h(y)∥

= sup
∥w∗∥=1

∣∣w∗(f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)h(y)

)∣∣
≥
∣∣z∗(f ( p

√
xp + yp

) )
+ z∗

(
f
(

p
√
xp − yp

) )
− λ · z∗

(
g(x)

)
· z∗
(
h(y)

)∣∣,
which states that the superpositions z∗ ◦ g and z∗ ◦ h yield solutions of the
inequalities ((2.17) and (2.22) in Theorems 2.5 and 2.6, respectively.

(i) Hence we can apply to Theorem 2.5.
Since, by assumption, the superposition z∗ ◦ h with g(0) = 0 is unbounded,

an appeal to Theorem 2.5 shows that the superposition z∗ ◦ g is a solution of
(Sr), that is,

(z∗ ◦ g)

(
p

√
xp + yp

2

)2

− (z∗ ◦ g)

(
p

√
xp − yp

2

)2

= λ(z∗ ◦ g)(x)(z∗ ◦ g)(y).

Since z∗ is a linear multiplicative functional, we get

z∗

g

(
p

√
xp + yp

2

)2

− g

(
p

√
xp − yp

2

)2

− g(x)g(y)

 = 0.

Hence an unrestricted choice of z∗ implies that

g

(
p

√
xp + yp

2

)2

− g

(
p

√
xp − yp

2

)2

− g(x)g(y) ∈
⋂

{ker z∗ : z∗ ∈ E∗}.

Since E is a semisimple Banach algebra,
⋂
{ker z∗ : z∗ ∈ E∗} = 0, which

means that g satisfies the claimed equation (Sr).
(ii) By assumption, the superposition z∗ ◦ g with h(0) = 0 is unbounded, an

appeal to Theorem 2.6 shows that the results hold.
An appeal to Theorem 2.6 shows that z∗ ◦h is solution of the equation (Sr),

that is,

(z∗ ◦ h)

(
p

√
xp + yp

2

)2

− (z∗ ◦ h)

(
p

√
xp − yp

2

)2

= λ(z∗ ◦ h)(x)(z∗ ◦ h)(y).

This means by a linear multiplicativity of z∗ that the differences

DSr(x, y) :=h

(
p

√
xp + yp

2

)2

− h

(
p

√
xp − yp

2

)2

− h(x)h(y)

fall into the kernel of z∗. That is, z∗ (DSr(x, y)) = 0.
Hence an unrestricted choice of z∗ implies that

DSr(x, y) ∈
⋂

{ker z∗ : z∗ ∈ E∗}.
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Since the algebra E is semisimple,
⋂
{ker z∗ : z∗ ∈ E∗} = 0, which means

that h satisfies the claimed equations (Sr).

By a similar procedure, we can prove the next theorem as an extension of
Theorems 2.2 and 2.3. So we will skip the proof.

Theorem 3.2. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra.
Assume that f, g : R → E satisfy the inequality

(3.2) ∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)g(y)∥ ≤

{
(i) φ(x)

(ii) φ(y).

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ g with g(0) = 0 or f(−x) = −f(x) is unbounded, then h satisfies

(Sr).
(ii) If z∗ ◦ g with g(0) = 0 is unbounded, then g satisfies (Sr).

Corollary 3.3. Let (E, ∥·∥) be a semisimple commutative Banach algebra.
Assume that f, g : R → E satisfy the inequality

∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λg(x)f(y)∥ ≤

{
(i) φ(x)

(ii) φ(y) and φ(x).

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ f is unbounded, then g satisfies (Cr

λ).
(ii) If z∗ ◦ g (or z∗ ◦ f) is unbounded, then g satisfies (Cr

λ), and f and g
satisfy (Kr

λ) and (W r
λ).

Corollary 3.4. Let (E, ∥·∥) be a semisimple commutative Banach algebra.
Assume that f, g : R → E satisfy the inequality

∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λf(x)g(y)∥ ≤

{
(i) φ(y)

(ii) φ(x) and φ(y).
.

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ f is unbounded, then g satisfies (Cr

λ).
(ii) If z∗ ◦ g (or z∗ ◦ f) is unbounded, then g satisfies (Cr

λ), and f and g
satisfy (Kr

λ) and (W r
λ).

Corollary 3.5. Let (E, ∥·∥) be a semisimple commutative Banach algebra.
Assume that f, g : R → E satisfy the inequality

∥f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− λf(x)f(y)∥ ≤


(i) φ(x)

(ii) φ(y)

(iii) ε.

Then either the superposition z∗◦f is bounded for each linear multiplicative
functional z∗ ∈ E∗ or f satisfies (Cr

λ).
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Remark 3.6. As like 2.11, in all results, applying p = 1 or λ = 2, one
can obtain (C), (W ), (K), (Cλ), (Wλ), (Kλ) (Cr), (W r), (Kr). Hence they
can be obtained to the stability results on the Banach algebras of the cosine,
Wilson, Kim, trigonometric functional eqautions, etc. See Badora [2], Badora
and Ger [3], Baker [4], Fassi, et al.[6], Kannappan and Kim [8], Kim [11, 16],
and Almahalebi, et al.[1].
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