
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 20, No. 4, December 2007

THE STABILITY OF THE GENERALIZED SINE

FUNCTIONAL EQUATIONS III

Gwang Hui Kim*

Abstract. The aim of this paper is to investigate the stability prob-
lem bounded by function for the generalized sine functional equations as
follow:

f(x)g(y) = f

(
x + y

2

)2

− f

(
x + σy

2

)2

g(x)g(y) = f

(
x + y

2

)2

− f

(
x + σy

2

)2

.

As a consequence, we have generalized the superstability of the sine
type functional equations.

1. Introduction

The stability problem of functional equation was raised by S. M. Ulam
[15]. Most research follows the Hyers-Ulam stability which is to construct of
a convergent sequence by an iteration process. In 1979, J. Baker, J. Lawrence
and F. Zorzitto [3] postulated that if f satisfies the stability inequality |E1(f)−
E2(f)| ≤ ε, then either f is bounded or E1(f) = E2(f). This is referred as the
superstability.

Baker [2] showed the superstability of the cosine functional equation (also
called the d’Alembert functional equation)

(A) f(x + y) + f(x− y) = 2f(x)f(y).
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This article’s results are related with the following equations

f(x + y) + f(x + σy) = 2f(x)f(y)(Ã)

f(x + y) + f(x− y) = 2f(x)g(y)(Afg)

f(x + y) + f(x + σy) = 2f(x)g(y)(Ãfg)

f(x + y)− f(x− y) = 2f(x)f(y)(T )

f(x + y)− f(x + σy) = 2f(x)f(y)(T̃ )

f(x + y)− f(x− y) = 2f(x)g(y)(Tfg)

f(x + y)− f(x + σy) = 2f(x)g(y),(T̃fg)

which stabilities have been researched in papers ( [1], [5], [8], [10], [11]) in which
(Afg) is called the Wilson equation.

In this paper, let (G,+) be a uniquely 2-divisible Abelian group, C the
field of complex numbers, and R the field of real numbers, and let σ be an
endomorphism of G with σ(σ(x)) = x for all x ∈ G with a notation σ(x) = σx.
The properties g(x) = g(σx) and g(σx) = −g(x) with respect to σ will be
represented as even and odd function, respectively. We assume that f and g
are nonzero functions and ε is a nonnegative real constant, ϕ : G → R be a
mapping.

The superstability bounded by constant for the sine functional equation

(S) f(x)f(y) = f

(
x + y

2

)2

− f

(
x− y

2

)2

is investigated by P.W. Cholewa [4], and is improved in R. Badora and R. Ger
[1], G. H. Kim [9].

Let consider the generalized equations of the sine equation (S) as follow :

f(x)g(y) = f

(
x + y

2

)2

− f

(
x + σy

2

)2

(S̃fg)

g(x)g(y) = f

(
x + y

2

)2

− f

(
x + σy

2

)2

.(S̃gg)

For the cases σy = −y or g = f , they imply the following equations:

f(x)g(y) = f

(
x + y

2

)2

− f

(
x− y

2

)2

(Sfg)

g(x)g(y) = f

(
x + y

2

)2

− f

(
x− y

2

)2

(Sgg)

f(x)f(y) = f

(
x + y

2

)2

− f

(
x + σy

2

)2

.(S̃)
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Given mappings f, g : G → C, we define a difference operator DS̃fg : G → C
as

DS̃fg(x, y) := f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2

,

which is called the approximate remainder of (S̃fg) and acts as a perturbation
of the equation.

In [12], the author proved the superstability for the equation (Sfg) under
the condition |DSfg(x, y)| ≤ ε.

The aim of this paper is to investigate the superstability for the generalized
sine functional equation (S̃fg) under the conditions |DS̃fg(x, y)| ≤ ϕ(x) or
ϕ(y). From the obtained results, we also obtain the superstability for the
equations (S), (S̃), (Sfg), (Sgg), (S̃gg) as corollaries.

2. Stability of the Equation (S̃fg)

We will investigate the stability of the generalized functional equation (S̃fg)
of the sine functional equation (S).

Theorem 2.1. Suppose that f, g : G → C satisfy the inequality

(1)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ϕ(y)

for all x, y ∈ G. Then either f is bounded or g satisfies (S̃). If, additionally, f

satisfies (Ã), then f and g are solutions of g(x + y)− g(x + σy) = 2f(x)g(y).

Proof. Let f be unbounded. Then we can choose a sequence {xn} in G such
that

(2) 0 6= |f(2xn)| → ∞ as n →∞.

Inequality (1) may equivalently be written as

(3) |f(2x)g(2y)− f(x + y)2 + f(x + σy)2| ≤ ϕ(2y) ∀ x, y ∈ G.

Taking x = xn in (3) we obtain
∣∣∣∣g(2y)− f(xn + y)2 − f(xn + σy)2

f(2xn)

∣∣∣∣ ≤
ϕ(2y)
|f(2xn)| ,

that is, using (2)

(4) g(2y) = lim
n→∞

f(xn + y)2 − f(xn + σy)2

f(2xn)
∀ y ∈ G.
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Using (1) we have

2ϕ(y) ≥
∣∣∣∣∣f(2xn + x)g(y)− f

(
xn +

x + y

2

)2

+ f

(
xn +

x + σy

2

)2
∣∣∣∣∣

+

∣∣∣∣∣f(2xn + σx)g(y)− f

(
xn +

σx + y

2

)2

+ f

(
xn +

σ(x + y)
2

)2
∣∣∣∣∣

= | (f(2xn + x) + f(2xn + σx)) g(y)

−
(

f

(
xn +

x + y

2

)2

− f

(
xn +

σ(x + y)
2

)2
)

+

(
f

(
xn +

x + σy

2

)2

− f

(
xn +

σ(x + σy)
2

)2
)∣∣∣∣∣

for all x, y ∈ G and every n ∈ N. Consequently, that is

2ϕ(y)
|f(2xn)| ≥

∣∣∣∣
f(2xn + x) + f(2xn + σx)

f(2xn)
g(y)

−
f

(
xn + x+y

2

)2 − f
(
xn + σ(x+y)

2

)2

f(2xn)

+
f

(
xn + x+σy

2

)2 − f
(
xn + σ(x+σy)

2

)2

f(2xn)

∣∣∣∣∣∣∣
for all x, y ∈ G and every n ∈ N. Taking the limit as n −→ ∞ with the use of
(2) and (4), we conclude that, for every x ∈ G, there exists the limit

h(x) := lim
n→∞

f(2xn + x) + f(2xn + σx)
f(2xn)

,

where the function h : G → C satisfies the equation

(5) h(x)g(y) = g(x + y)− g(x + σy) ∀x, y ∈ G.

From the definition of h, we get the equality h(0) = 2, which jointly with
(5) implies that g is an odd w.r.t. σ, namely, g(y) = −g(σy). Keeping this in
mind, by means of (5), we infer the equality

g(x + y)2 − g(x + σy)2 = [g(x + y) + g(x + σy)][g(x + y)− g(x + σy)]

= [g(x + y) + g(x + σy)]h(x)g(y)

=
[
g(2x + y) + g(2x + σy)

]
g(y)

=
[
g(y + 2x)− g(y + σ(2x))

]
g(y)

= h(y)g(2x)g(y).
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The oddness of g forces g(x + σx) = 0 for all x ∈ G. Hence, putting x = y
in (5), we get

g(2y) = g(y)h(y).

This, in return, leads to the equation

g(x + y)2 − g(x + σy)2 = g(2x)g(2y)

valid for all x, y ∈ G, which, in the light of the unique 2-divisibility of G, states
that g satisfies (S̃).

Assume that f satisfies (Ã). Then, since the limited function h becomes
2f , the equation (5) implies g(x + y)− g(x + σy) = 2f(x)g(y).

Theorem 2.2. Suppose that f, g : G → C satisfy the inequality

(6)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ϕ(x),

which satisfies the cases f(0) = 0 or f(x)2 = f(σx)2 for all x, y ∈ G.

Then either g is bounded or f satisfies (S̃). If, additionally, g satisfies (Ã),

then f and g satisfy the equation (Ãfg).

Proof. Suppose that g is unbounded, then we can choose a sequence {yn}
in G such that 0 6= |g(2yn)| → ∞ as n →∞.

An obvious slight change in the proof steps applied in Theorem 2.1 allows
one to state the existence of a limit function

p(y) := lim
n→∞

g(y + 2yn) + g(σy + 2yn)
g(2yn)

,

where p : G → C satisfies the equation

(7) f(x)p(y) = f(x + y) + f(x + σy) ∀x, y ∈ G.

From the definition of p, we get the equality p(y) = p(σy). Clearly, this
applies also to the function p̃ := 1

2p. Moreover, p̃(0) = 1
2p(0) = 1 and

(8) f(x + y) + f(x + σy) = 2f(x)p̃(y) ∀x, y ∈ G.

Consider the case f(0) = 0, then we know under (8) that

(9) f(0) = 0 =⇒ f(x) = −f(σx) =⇒ f(x + σx) = 0 =⇒ f(0) = 0.

Putting y = x in (8), we get by (9) a duplication formula

f(2x) = 2f(x)p̃(x).
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Using (9) and a dupplication of f , we obtain, by means of (8), the equation

f(x + y)2 − f(x + σy)2 = [f(x + y) + f(x + σy)][f(x + y)− f(x + σy)]

= 2f(x)p̃(y)[f(x + y)− f(x + σy)]

= f(x)[f(x + 2y)− f(x + 2σy)]

= f(x)[f(x + 2y) + f(σx + 2y)]

= 2f(x)f(2y)p̃(x) = f(2x)f(2y)

holds true for all x, y ∈ G, which, in the light of the unique 2-divisibility of G,
states that f satisfies nothing else but (S̃).

In case f(x)2 = f(σx)2, it is sufficient to show that f(0) = 0. Suppose
that this is not the case. Then, without loss of generality, we may assume that
f(0) = 1.

Putting x = 0 in (6) with f(x)2 = f(σx)2 and the 2-divisibility of group G,
we obtain the inequality

|g(y)| ≤ ϕ(0) ∀ y ∈ G.

This inequality means that f is globally bounded – a contradiction. Thus
the claimed f(0) = 0 holds, it is completed that f satisfies (S̃).

For the additive case, assume that g satisfies (Ã). Then, since the limited
function p becomes 2g, the equation (7) implies (Ãfg). The proof of the theorem
is completed.

Theorem 2.3. Suppose that f, g : G → C satisfy the inequality

(10)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ min{ϕ(x), ϕ(y)}

for all x, y ∈ G.

(a) either f is bounded or g satisfies (S̃). If, additionally, f satisfies (Ã),
then f and g satisfy the equation g(x + y)− g(x + σy) = 2f(x)g(y).

(b) either g is bounded or g satisfies (S̃). If, additionally, f satisfies (Ã),
then f and g are solutions of g(x + y)− g(x + σy) = 2f(x)g(y).

(c) if the inequality (10) satisfies the cases f(0) = 0 or f(x)2 = f(σx)2 for

all x ∈ G, then either g is bounded or f satisfies (S̃). If, additionally, g satisfies

(Ã), then f and g satisfy the equation (Ãfg).

Proof. (a) and (c) are trivial from Theorem 2.1 and Theorem 2.2, respec-
tively.

For (b), it is enough from (a) to show that the unboundedness of g implies
that of f .

The inequality (10) can be represented by the equation

(11) |f(2x)g(2y)− f(x + y)2 + f(x + σy)2| ≤ min{ϕ(2x), ϕ(2y)}.
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If f is bounded, choose x0 ∈ G such that f(2x0) 6= 0, and then by (11) we
obtain

|g(2y)| −
∣∣∣∣
f(x0 + y)2 − f(x0 + σy)2

f(2x0)

∣∣∣∣

≤
∣∣∣∣
f(x0 + y)2 − f(x0 + σy)2

f(2x0)
− g(2y)

∣∣∣∣

≤ min{ϕ(2x0), ϕ(2y)}
|f(2x0)| ≤ ϕ(2x0)

|f(2x0)|
and it follows that g is also bounded. Hence the required condition is satisfied.

By putting ϕ(x) = ϕ(y) = ε in the above Theorems 2.1, 2.2, 2.3, we obtain
the following results.

Corollary 2.4. ([12] Theorem 3.1, Theorem 3.2) Suppose that f, g : G →
C satisfy the inequality

(12)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε

for all x, y ∈ G.

(a) either f is bounded or g satisfies (S̃). If, additionally, f satisfies (Ã),
then f and g satisfy the equation g(x + y)− g(x + σy) = 2f(x)g(y).

(b) either g is bounded or g satisfies (S̃). If, additionally, f satisfies (Ã),
then f and g are solutions of g(x + y)− g(x + σy) = 2f(x)g(y).

(c) if the inequality (12) satisfies the cases f(0) = 0 or f(x)2 = f(σx)2 for

all x ∈ G, then either g is bounded or f satisfies (S̃). If, additionally, g satisfies

(Ã), then f and g satisfy the equation (Ãfg).

3. Applications to the sine type equations

The stability results for (S̃fg) treated in Section 2 will be applied to the
functional equations (S), (S̃), (Sfg), (Sgg), (S̃gg).

3.1. Stability of the Equation (S̃gg)

The proof for the stability of the equation (S̃gg) runs along those of Section
2 by replacing f(x) to g(x). So we will cancel their proofs.

Theorem 3.1. Suppose that f, g : G → C satisfy the inequality∣∣∣∣∣g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ϕ(y)

for all x, y ∈ G. Then either g is bounded or g satisfies (S̃).
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Theorem 3.2. Suppose that f, g : G → C satisfy the inequality∣∣∣∣∣g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ϕ(x),

which satisfies the cases g(0) = 0 or f(x)2 = f(σx)2 for all x, y ∈ G. Then

either g is bounded or g satisfies (S̃).

Corollary 3.3. Suppose that f, g : G → C satisfy the inequality∣∣∣∣∣g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε

for all x, y ∈ G.

Then either g is bounded or g satisfies (S̃).

Remark 3.1. Putting σy = −y in above results : Theorem 3.1, Theorem
3.2, Corollary 3.3, we can obtain the same type’s results for the equation (Sgg),
in which Corollary 3.3 is founded in ([9]).

3.2. Applications to the Equations (Sfg) and (S)

Let σy = −y in Theorem 2.1, Theorem 2.2, Theorem 2.3, then we obtain
the superstability for the equation (Sfg) and (S).

Theorem 3.4. Suppose that f, g : G → C satisfy the inequality∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ϕ(y)

for all x, y ∈ G. Then either f is bounded or g satisfies (S). If, additionally, f
satisfies (A), then f and g are solutions of g(x + y)− g(x− y) = 2f(x)g(y).

Theorem 3.5. Suppose that f, g : G → C satisfy the inequality∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ϕ(x),

which satisfies the cases f(0) = 0 or f(x)2 = f(−x)2 for all x, y ∈ G.
Then either g is bounded or f satisfies (S). If, additionally, g satisfies (A),

then f and g satisfy the equation (Afg).

Theorem 3.6. Suppose that f, g : G → C satisfy the inequality

(13)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ min{ϕ(x), ϕ(y)}

for all x, y ∈ G.
(a) either f is bounded or g satisfies (S). If, additionally, f satisfies (A),

then f and g satisfy the equation g(x + y)− g(x− y) = 2f(x)g(y).
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(b) either g is bounded or g satisfies (S). If, additionally, f satisfies (A),
then f and g are solutions of g(x + y)− g(x− y) = 2f(x)g(y).

(c) if the inequality (13) satisfies the cases f(0) = 0 or f(x)2 = f(−x)2 for
all x ∈ G, then either g is bounded or f satisfies (S). If, additionally, g satisfies
(A), then f and g satisfy the equation (Afg).

Corollary 3.7. ([9] Corollary 4.) Suppose that f, g : G → C satisfy the
inequality

(14)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε

for all x, y ∈ G.

(a) either f is bounded or g satisfies (S). If, additionally, f satisfies (A),
then f and g satisfy the equation g(x + y)− g(x− y) = 2f(x)g(y).

(b) either g is bounded or g satisfies (S). If, additionally, f satisfies (A),
then f and g are solutions of g(x + y)− g(x− y) = 2f(x)g(y).

(c) if the inequality (14) satisfies the cases f(0) = 0 or f(x)2 = f(−x)2 for
all x ∈ G, then either g is bounded or f satisfies (S). If, additionally, g satisfies
(A), then f and g satisfy the equation (Afg).

Corollary 3.8. ([1] Theorem 6, [4] Theorem, [9] Corollary 10) Suppose
that f : G → C satisfies the inequality

∣∣∣∣∣f(x)f(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤





(i) ϕ(y)

(ii) ϕ(x)

(iii) ε

for all x, y ∈ G. Then either f is bounded or f satisfies (S).

Proof. The cases (i) and (iii) are trivial.
In the proof of Theorem 5 in [1], whenever f is unbounded we find that

f(0) = 0. Hence we can eliminate the assumption f(0) = 0.

4. Applications on the Banach algebra

In this section, we will extend the range of the function from the field of
complex numbers to the Banach algebra. For simplicity, we will combine them
into one theorem.
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Theorem 4.1. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra.
Assume that f, g : G → E and ϕ : G → R satisfy the inequalities

∥∥∥∥∥f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥ ≤





(i) ϕ(y)

(ii) ϕ(x)

(iii) min{ϕ(x), ϕ(y)}
with the cases f(0) = 0 or f(x)2 = f(σx)2 in the cases (ii) and (iii).

For an arbitrary linear multiplicative functional x∗ ∈ E∗,

Case(i). either the superposition x∗ ◦ f is bounded or g satisfies (S̃). If, addition-

ally, f satisfies (Ã), then f and g are solutions of g(x + y)− g(x + σy) =
2f(x)g(y).

Case(ii). either the superposition x∗ ◦ g is bounded or f satisfies (S̃). If, addition-

ally, g satisfies (Ã), then f and g are solutions of the equation (Ãfg).

Case(iii). (a) either the superposition x∗ ◦ f is bounded or g satisfies (S̃). If,

additionally, f satisfies (Ã), then f and g are solutions of the equation
g(x + y)− g(x + σy) = 2f(x)g(y).
(b) either the superposition x∗ ◦ g is bounded or f and g satisfy (S̃),

respectively. If, additionally, f satisfies (Ã), then f and g are solutions
of g(x + y)− g(x + σy) = 2f(x)g(y), and also if, additionally, g satisfies

(Ã), then f and g satisfy the equation (Ãfg).

Proof. Assume that (i) holds and fix arbitrarily a linear multiplicative func-
tional x∗ ∈ E. As is well known we have ‖x∗‖ = 1.

In (i), we have

ϕ(y) ≥
∥∥∥∥∥f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥

= sup
‖y∗‖=1

∣∣∣∣∣y
∗
(

f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
)∣∣∣∣∣

≥
∣∣∣∣∣x
∗(f(x)) · x∗(g(y))− x∗

(
f

(
x + y

2

)2
)

+ x∗
(

f

(
x + σy

2

)2
)∣∣∣∣∣ ,

which states that the superpositions x∗ ◦ f and x∗ ◦ g yield solutions of the
inequality (1) of Theorem 2.1. Assume that the superposition x∗ ◦ f is un-
bounded, then Theorem 2.1 forces that the function x∗ ◦ g solves the equation
(S̃). In other words, keeping the linear multiplicativity of x∗ in mind, this
means that the difference DS̃g(x, y) for the function g falls into the kernel of
x∗. Therefore, in view of the unrestricted choice of x∗, we infer that

DS̃g(x, y) = g(x)g(y)− g

(
x + y

2

)2

+ g

(
x + σy

2

)2

∈
⋂
{kerx∗ : x∗ ∈ E∗}
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for all x, y ∈ G. Since the algebra E has been assumed to be semisimple, the
last term of the above formula coincides with the singleton {0}, i.e.

g(x)g(y)− g

(
x + y

2

)2

+ g

(
x + σy

2

)2

= 0 for all x, y ∈ G,

as claimed. Each other cases runs away similar proceeding.

Due to Theorem 3.1 and Theorem 3.2, the following theorem runs along
that of Theorem 4.1.

Theorem 4.2. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra.
Assume that f, g : G → E and ϕ : G → R satisfy the inequalities

∥∥∥∥∥g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥ ≤





(i) ϕ(y)

(ii) ϕ(x)

with the cases g(0) = 0 or f(x)2 = f(σx)2 in the cases (ii).
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the super-

position x∗ ◦ g is bounded or g satisfies (S̃).

Remark 4.1. Putting σy = −y, g(x) = f(x) and ϕ(x) = ϕ(y) = ε in Theo-
rem 4.1 and Theorem 4.2, we obtain the same type’s results for the equations
(S̃), (S), (Sfg), and (Sgg) in which last three cases are founded in ([4]) and
([9]), respectively.
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