Browse > Article
http://dx.doi.org/10.14403/jcms.2022.35.4.315

TRANSFERRED SUPERSTABILITY OF THE p-RADICAL SINE FUNCTIONAL EQUATION  

Kim, Gwang Hui (Department of Mathematics Kangnam University)
Roh, Jaiok (Ilsong Liberal Art Schools(Mathematics) Hallym University)
Publication Information
Journal of the Chungcheong Mathematical Society / v.35, no.4, 2022 , pp. 315-327 More about this Journal
Abstract
In this paper, we investigate the transferred superstability for the p-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from the p-radical functional equations: $$f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)g(y),\;\\f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)h(y),$$ where p is an odd positive integer, λ is a positive real number, and f is a complex valued function. Furthermore, the results are extended to Banach algebras. Therefore, the obtained result will be forced to the pre-results(p=1) for this type's equations, and will serve as a sample to apply it to the extension of the other known equations.
Keywords
stability; superstability; radical equation; sine functional equation; Wilson functional equation; Kim functional equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. H. Kim, Superstability of the p-radical functional equations related to Wilson equation and Kim's eqaution, Int. J. Nonlinear Anal. Appl., 12 (2021), 571-582.
2 G. H. Kim and Y. H. Lee, Boundedness of approximate trigonometric functional equations, Appl. Math. Lett., 331 (2009), 439-443.
3 M. Almahalebi, R. El Ghali, S. Kabbaj and C. Park, Superstability of p-radical functional equations related to Wilson-Kannappan-Kim functional equations, Results Math., 76 (2021), 97-105 https://doi.org/10.1007/s00025-021-01409-2   DOI
4 R. Badora and R. Ger, On some trigonometric functional inequalities in Functional Equations, Results and Advances, (2002), 3-15.
5 J. A. Baker, The stability of the cosine equation, Proc. Am. Math. Soc., 80 (1980), 411-416.   DOI
6 Iz. EL-Fassi, S. Kabbaj and G. H. Kim, Superstability of a Pexider-type trigonometric functional equation in normed algebras, Inter. J. Math. Anal., 9 (2015), no. 58, 2839-2848.   DOI
7 M. Eshaghi Gordji and M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation $f(\sqrt{{x^{2}}+y^{2}} = f(x) + f(y)$), Nonlinear Funct. Anal. Appl., 14 (2009), 413-420.
8 Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math., 1 (2001), 49-58.
9 G. H. Kim, Superstability and Solution of The Pexiderized Trigonometric Functional Equation, Mathematics and Statistics, 8 (2020), no. 3, 363-371. DOI:10.13189/ms.2020.080316   DOI
10 G. H. Kim, Superstability of some Pexider-type functional equation, J. Inequal. Appl., 2010 (2010), DOI:10.1155/2010/985348.   DOI
11 G. H. Kim, On the stability of the generalized sine functional equations, Acta Math. Sinica, 25 (2009), 965-972.
12 G. H. Kim, On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput., 203 (2008), 99-105.   DOI
13 G. H. Kim, A Stability of the generalized sine functional equations, Jour. Math. Anal & Appl., 331 (2007), 886-894.   DOI
14 P. W. Cholewa, The stability of the sine equation, Proc. Am. Math. Soc., 88 (1983), 631-634.   DOI
15 G. H. Kim, The stability of the d'Alembert and Jensen type functional equations, J. Math. Anal. Appl., 325 (2007), 237-248.   DOI
16 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300.   DOI
17 R. Badora, On the stability of cosine functional equation, Rocznik Naukowo-Dydak. Prace Mat., 15 (1998), 1-14.