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NOTES ON THE SUPERSTABILITY OF D’ALEMBERT TYPE
FUNCTIONAL EQUATIONS

Peng Cao and Bing Xu

Abstract. In this paper we will investigate the superstability of the
generalized d’Alembert type functional equations

Pm
i=1 f(x + σi(y)) =

kg(x)f(y) and
Pm

i=1 f(x + σi(y)) = kf(x)g(y).

1. Introduction

D’Alembert functional equation

(1.1) f(x + y) + f(x− y) = 2f(x)f(y),

also called the cosine functional equation, has a long history going back to
J. D’Alembert [4]. The equation (1.1) plays an important role in determining
the sum of two vectors in various Euclidean and non-Euclidean geometries.

The superstability of the d’Alembert functional equation (1.1) originated
from J. A. Baker [2] under the condition |f(x+ y)+ f(x− y)− 2f(x)f(y)| ≤ ε.
R. Badora and R. Ger [1] generalized this result, by replacing ε by ε(x) or
ε(y). Recently, G. H. Kim investigated the superstability of the generalized
d’Alembert type functional equations as follows:

(1.2) f(x + y) + f(x + σy) = 2f(x)f(y),

(1.3) f(x + y) + f(x + σy) = 2g(x)f(y),

(1.4) f(x + y) + f(x + σy) = 2f(x)g(y).

Some special cases of the aforementioned functional equations were investi-
gated (see, e.g., [3, 5, 6, 7, 8, 10, 11]).

The main purpose of this paper is to study the superstability of the more
general d’Alembert type functional equations

(1.5)
m∑

i=1

f(x + σi(y)) = kg(x)f(y),
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(1.6)
m∑

i=1

f(x + σi(y)) = kf(x)g(y),

where m is a positive integer and k is an arbitrary nonzero complex number.
As an application, we obtain the superstability of functional equation

(1.7)
m∑

i=1

f(x + σi(y)) = kf(x)f(y).

In this paper, let (G,+) be an Abelian group, denote by N, R, C, as usual,
the set of positive integer, the real and complex number field, respectively.
Moreover, let σ be an endomorphism of G with σm(x) = x. We may assume
that f and g are nonzero functions, and ϕ : G → R.

2. Superstability of the equation (1.5)

Theorem 1. Suppose that f, g : G → C satisfy the inequality

(2.1)
∣∣∣

m∑

i=1

f(x + σi(y))− kg(x)f(y)
∣∣∣ ≤

{
(i) ϕ(x)
(ii) ϕ(y) and ϕ(x)

for all x, y ∈ G. Then
(i) either f is bounded or g satisfies (1.7),
(ii) either g (or f) is bounded or g satisfies (1.7),

also f and g satisfy (1.5) and (1.6).

Proof. For the case (i), let f be unbounded. Then we can choose a sequence
(yn)n>0 in G such that |f(yn)| 6= 0 and

(2.2) |f(yn)| → ∞ as n →∞.

We will show that g satisfies (1.7). Taking y = yn in (i) of (2.1) we obtain
∣∣∣∣
∑m

i=1 f(x + σi(yn))
kf(yn)

− g(x)
∣∣∣∣ ≤

ϕ(x)
|kf(yn)| .

Taking the limit as n →∞, we obtain

(2.3) lim
n→∞

∑m
i=1 f(x + σi(yn))

kf(yn)
= g(x)

for all x ∈ G. Using (i) of (2.1) we have

(2.4)
∣∣∣∣

m∑

j=1

m∑

i=1

f
(
x + σi

(
y + σj(yn)

))− kg(x)
m∑

j=1

f
(
y + σj(yn)

)∣∣∣∣ ≤ mϕ(x)

for all x, y ∈ G and every n ∈ N. Consider the condition σm(x) = x, we obtain

(2.5)
m∑

i=1

f(x + σi(y)) ≡
m∑

i=1

f(x + σs+i(y))
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for all x, y ∈ G and every s ∈ N. Then by (2.5) and (2.4), we have
∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
x + σi(y)

)
+ σj(yn)

)

kf(yn)
− kg(x)

∑m
j=1 f

(
y + σj(yn)

)

kf(yn)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
x + σi(y)

)
+ σi+j(yn)

)

kf(yn)
− kg(x)

∑m
j=1 f

(
y + σj(yn)

)

kf(yn)

∣∣∣∣∣∣

=

∣∣∣∑m
j=1

∑m
i=1 f

(
x + σi

(
y + σj(yn)

))− kg(x)
∑m

j=1 f
(
y + σj(yn)

)∣∣∣
|kf(yn)|

≤ mϕ(x)
|kf(yn)|

for all x, y ∈ G. By virtue of (2.3), we have
∣∣∣∣

m∑

i=1

g(x + σi(y))− kg(x)g(y)
∣∣∣∣ = 0

for all x, y ∈ G. Therefore g satisfies (1.7).
For the proof of the case (ii), first we show that f (or g) is unbounded if and

only if g (or f) is also unbounded. Putting y = 0 in (ii) of (2.1) we obtain

(2.6) |mf(x)− kg(x)f(0)| ≤ ϕ(0)

for all x ∈ G. If g is bounded, then by (2.6), we have

|f(x)| ≤ 1
m
|kg(x)f(0)|+ 1

m
ϕ(0),

which shows that f is also bounded. On the other hand, if f is bounded, we
choose y0 ∈ G such that f(y0) 6= 0, and then by (2.1) we obtain∣∣∣∣∣

∑m
i=1 f

(
x + σi(y0)

)

kf(y0)
− g(x)

∣∣∣∣∣ ≤
ϕ(y0)
|kf(y0)|

and it follows that g is also bounded on G.
Namely, if f (or g) is unbounded, then so is g (or f).
Let g be unbounded, then f is also unbounded. Then we can choose se-

quences (xn)n>0 and (yn)n>0 in G such that |g(xn)| 6= 0 and |g(xn)| → ∞,
|f(yn)| 6= 0 and |f(yn)| → ∞ as n →∞.

Taking x = xn in (ii) of (2.1) we deduce

(2.7) lim
n→∞

∑m
i=1 f

(
xn + σi(y)

)

kg(xn)
= f(y)

for all y ∈ G. Using (ii) of (2.1) we have

(2.8)
∣∣∣∣

m∑

i=1

m∑

j=1

f
((

xn + σi(x)
)

+ σj(y)
)
− k

m∑

i=1

g
(
xn + σi(x)

)
f(y)

∣∣∣∣ ≤ mϕ(y)
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for all x, y ∈ G and every n ∈ N. Then by (2.5) and (2.8), we obtain
∣∣∣∣∣∣

m∑

j=1

∑m
i=1 f

(
xn + σi

(
x + σj(y)

))

kg(xn)
− k

∑m
i=1 g

(
xn + σi(x)

)

kg(xn)
f(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑m
i=1

∑m
j=1 f

((
xn + σi(x)

)
+ σi+j(y)

)

kg(xn)
− k

∑m
i=1 g

(
xn + σi(x)

)

kg(xn)
f(y)

∣∣∣∣∣∣

=

∣∣∣∑m
i=1

∑m
j=1 f

((
xn + σi(x)

)
+ σj(y)

)
− k

∑m
i=1 g

(
xn + σi(x)

)
f(y)

∣∣∣
|kg(xn)|

≤ mϕ(y)
|kg(xn)|

for all x, y ∈ G and every n ∈ N. Passing here to the limit as n → ∞ with
the use of |g(xn)| → ∞ and (2.7). Since g satisfies (1.7) by (i), we have∣∣ ∑m

j=1 f
(
x + σj(y)

) − kg(x)f(y)
∣∣ = 0, that is to say f and g are solutions of

(1.5).
Applying (ii) of (2.1) again, we get
∣∣∣∣∣∣

m∑

i=1

m∑

j=1

f
((

xn + σi(y)
)

+ σj(x)
)
− k

m∑

i=1

g
(
xn + σi(y)

)
f(x)

∣∣∣∣∣∣
≤ mϕ(x)

and using (2.5), we have
∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

(
xn + σj

(
x + σi(y)

))

kg(xn)
− kf(x)

∑m
i=1 g

(
xn + σi(y)

)

kg(xn)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

j=1

∑m
i=1 f

((
xn + σj(x)

)
+ σj+i(y)

)

kg(xn)
− kf(x)

∑m
i=1 g

(
xn + σi(y)

)

kg(xn)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

j=1

∑m
i=1 f

((
xn + σj(x)

)
+ σi(y)

)

kg(xn)
− kf(x)

∑m
i=1 g

(
xn + σi(y)

)

kg(xn)

∣∣∣∣∣∣

=

∣∣∣∑m
i=1

∑m
j=1 f

((
xn + σi(y)

)
+ σj(x)

)
− kf(x)

∑m
i=1 g

(
xn + σi(y)

)∣∣∣
|kg(xn)|

≤ mϕ(x)
|kg(xn)|

for all x, y ∈ G and every n ∈ N. Using (2.7) and the fact that g satisfies (1.7)
by (i), we have

∣∣ ∑m
i=1 f

(
x + σi(y)

) − kf(x)g(y)
∣∣ = 0, that is to say f and g

are solutions of (1.6). ¤
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In the case of m = k = 2 in Theorem 1, we can obtain the following corollary,
which was investigated by G. H. Kim [9].

Corollary 1 ([9]). Suppose that f, g : G → C satisfy the inequality

|f(x + y) + f
(
x + σ(y)

)− 2g(x)f(y)| ≤
{

(i) ϕ(x)
(ii) ϕ(y) and ϕ(x)

for all x, y ∈ G. Then
(i) either f is bounded or g satisfies (1.2),
(ii) either g (or f) is bounded or g satisfies (1.2),

also f and g satisfy (1.3) and (1.4).

If g = f in Theorem 1, then the stability problem of the functional equation
(1.7) is proved as a corollary.

Corollary 2. Suppose that f : G → C satisfies the inequality
∣∣∣∣

m∑

i=1

f
(
x + σi(y)

)− kf(x)f(y)
∣∣∣∣ ≤

{
(i) ϕ(x)
(ii) ϕ(y) and ϕ(x)

for all x, y ∈ G. Then, in all cases (i) and (ii), either f is bounded or f satisfies
(1.7).

3. Superstability of the equation (1.6)

We will prove the stability of (1.6) using a strategy similar to that of Theo-
rem 1.

Theorem 2. Suppose that f, g : G → C satisfy the inequality

(3.1)
∣∣∣∣

m∑

i=1

f
(
x + σi(y)

)− kf(x)g(y)
∣∣∣∣ ≤

{
(i) ϕ(y)
(ii) ϕ(x) and ϕ(y)

for all x, y ∈ G. Then
(i) either f is bounded or g satisfies (1.7),
(ii) either g (or f) with f(σx) = f(x) is bounded or g satisfies (1.7),

also f and g satisfy (1.5) and (1.6).

Proof. For the case (i), let f be unbounded. Then we can choose a sequence
(xn)n>0 in G such that |f(xn)| 6= 0 and

(3.2) |f(xn)| → ∞ as n →∞.

We will show that g satisfies (1.7). Taking x = xn in (3.1) we obtain

(3.3) lim
n→∞

∑m
i=1 f(xn + σi(y))

kf(xn)
= g(y)
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for all y ∈ G. Using (i) of (3.1) we have

(3.4)
∣∣∣∣

m∑

i=1

m∑

j=1

f
((

xn + σi(x)
)

+ σj(y)
)
− k

m∑

i=1

f
(
xn + σi(x)

)
g(y)

∣∣∣∣ ≤ mϕ(y)

for all x, y ∈ G and every n ∈ N. Then by (2.5) and (3.4), we obtain
∣∣∣∣∣∣

m∑

j=1

∑m
i=1 f

(
xn + σi

(
x + σj(y)

))

kf(xn)
− k

∑m
i=1 f

(
xn + σi(x)

)

kf(xn)
g(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
xn + σi(x)

)
+ σi+j(y)

)

kf(xn)
− k

∑m
i=1 f

(
xn + σi(x)

)

kf(xn)
g(y)

∣∣∣∣∣∣

=

∣∣∣∑m
i=1

∑m
j=1 f

((
xn + σi(x)

)
+ σj(y)

)
− k

∑m
i=1 f

(
xn + σi(x)

)
g(y)

∣∣∣
|kf(xn)|

≤ mϕ(y)
|kf(xn)|

for all x, y ∈ G. By virtue of (3.2) and (3.3), we have
∣∣∣∣

m∑

j=1

g
(
x + σj(y)

)− kg(x)g(y)
∣∣∣∣ = 0

for all x, y ∈ G. Therefore g satisfies (1.7).
For the case (ii), we can see that, similar to Theorem 1, f (or g) is unbounded

if and only if g (or f) is also unbounded. Namely, if f is bounded, choose x0 ∈ G
such that f(x0) 6= 0 and use (ii) of (3.1) to get

|g(y)| −

∣∣∣ ∑m
i=1 f

(
x0 + σi(y)

)∣∣∣
|kf(x0)| ≤

∣∣∣∣∣

∑m
i=1 f

(
x0 + σi(y)

)

kf(x0)
− g(y)

∣∣∣∣∣ ≤
ϕ(x0)
|kf(x0)| ,

which shows that g is also bounded.
Suppose f is unbounded. Putting x = 0 in (ii) of (3.1), we have

∣∣
m∑

i=1

f(σiy)− kf(0)g(y)
∣∣ ≤ ϕ(0),

that is, |mf(y) − kf(0)g(y)| ≤ ϕ(0), since f(σx) = f(x) for all x ∈ G. This
implies that g is also unbounded.

Let g be unbounded, then f is also unbounded. Then we can choose se-
quences (xn)n>0 and (yn)n>0 in G such that |f(xn)| 6= 0 and |f(xn)| → ∞,
|g(yn)| 6= 0 and |g(yn)| → ∞ as n →∞.

Taking y = yn in (ii) of (3.1) we deduce

(3.5) lim
n→∞

∑m
i=1 f

(
x + σi(yn)

)

kg(yn)
= f(x)
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for all x ∈ G. Using (ii) of (3.1) we have

(3.6)
∣∣∣∣

m∑

j=1

m∑

i=1

f
(
x + σi

(
y + σj(yn)

))− kf(x)
m∑

j=1

g
(
y + σj(yn)

)∣∣∣∣ ≤ mϕ(x)

for all x, y ∈ G and every n ∈ N. Then by (2.5) and (3.6), we obtain
∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
x + σi(y)

)
+ σj(yn)

)

kg(yn)
− kf(x)

∑m
j=1 g

(
y + σj(yn)

)

kg(yn)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
x + σi(y)

)
+ σi+j(yn)

)

kg(yn)
− kf(x)

∑m
j=1 g

(
y + σj(yn)

)

kg(yn)

∣∣∣∣∣∣

=

∣∣∣∑m
j=1

∑m
i=1 f

(
x + σi

(
y + σj(yn)

))− kf(x)
∑m

j=1 g
(
y + σj(yn)

)∣∣∣
|kg(yn)|

≤ mϕ(x)
|kg(yn)|

for all x, y ∈ G. Since g satisfies (1.7), it follows from (3.5) that
∣∣∣∣

m∑

i=1

f
(
x + σi(y)

)− kf(x)g(y)
∣∣∣∣ = 0

for all x, y ∈ G. Hence f and g are solutions of (1.6).
Applying (ii) of (3.1) again, we get

(3.7)
∣∣∣∣

m∑

j=1

m∑

i=1

f
(
y + σi

(
x + σj(yn)

))− kf(y)
m∑

j=1

g
(
x + σj(yn)

)∣∣∣∣ ≤ mϕ(y)

for all x, y ∈ G. Since f(σx) = f(x) for all x ∈ G and (3.7), we have
∣∣∣∣∣∣

m∑

i=1

∑m
j=1 f

((
x + σm−i(y)

)
+ σj(yn)

)

kg(yn)
− k

∑m
j=1 g

(
x + σj(yn)

)

kg(yn)
f(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑m
i=1

∑m
j=1 f

(
σi

(
x + σm−i(y) + σj(yn)

))

kg(yn)
− k

∑m
j=1 g

(
x + σj(yn)

)

kg(yn)
f(y)

∣∣∣∣∣∣

=

∣∣∣∑m
j=1

∑m
i=1 f

(
y + σi

(
x + σj(yn)

))− k
∑m

j=1 g
(
x + σj(yn)

)
f(y)

∣∣∣
|kg(yn)|

≤ mϕ(y)
|kg(yn)|
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for all x, y ∈ G. Since g satisfies (1.7), using (3.5), we have
∣∣∣∣

m∑

i=1

f
(
x + σi(y)

)− kg(x)f(y)
∣∣∣∣ =

∣∣∣∣
m∑

i=1

f
(
x + σm−i(y)

)− kg(x)f(y)
∣∣∣∣ = 0

for all x, y ∈ G. Therefore f and g are solutions of (1.5). ¤

In the case of m = k = 2 in Theorem 2, we can obtain the following corollary,
which was investigated by G. H. Kim [9].

Corollary 3 ([9]). Suppose that f, g : G → C satisfy the inequality

|f(x + y) + f
(
x + σ(y)

)− 2f(x)g(y)| ≤
{

(i) ϕ(y)
(ii) ϕ(x) and ϕ(y)

for all x, y ∈ G. Then
(i) either f is bounded or g satisfies (1.2),
(ii) either g (or f) with f(σx) = f(x) is bounded or g satisfies (1.2),

also f and g satisfy (1.3) and (1.4).

If we apply the case g = f to Theorem 2, then the stability problem of the
functional equation (1.7) is proved as a corollary.

Corollary 4. Suppose that f : G → C satisfies the inequality
∣∣∣∣

m∑

i=1

f
(
x + σi(y)

)− kf(x)f(y)
∣∣∣∣ ≤

{
(i) ϕ(y)
(ii) ϕ(x) and ϕ(y)

for all x, y ∈ G. Then, in all cases (i) and (ii), either f is bounded or f satisfies
(1.7).

Example. Let σ(x) = ax, where a is a constant in C satisfying am = 1. Then
Theorem 1 and Theorem 2 hold for the functional equations

m∑

i=1

f(x + aiy) = kg(x)f(y),

m∑

i=1

f(x + aiy) = kf(x)g(y).
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