• Title/Summary/Keyword: sulfation

Search Result 68, Processing Time 0.113 seconds

Synthesis, interfacial property, and application of new hybrid anion surfactant containing fluorocarbon and hydrocarbon chains

  • Kang, Eun-kyung;Sohn, Eun-Ho;Jung, Ga Young;Jung, Seon Hwa;Ha, Jong-Wook;Lee, Soo-Bok;Park, In Jun;Lee, Byung Min
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.72-79
    • /
    • 2018
  • Hybrid F2HX surfactants bearing a sulfate moiety and both hydrocarbon and fluorocarbon chains were prepared by the reaction of alkyl glycidyl ethers with fluoro-alcohol, and subsequent sulfation. The fluorocarbon number in F2HX was fixed at the shortest number possible (i.e., 2), while the hydrocarbon number (X) in the second chain was varied between 2, 4, 6, and 8. Their surface-active properties and emulsion stabilities were systematically estimated as a function of the X. Among them, F2H8 exhibited the optimal surfactant performance, which was comparable to previously reported surfactants and it was successfully applied in the emulsion polymerization of vinylidene fluoride.

Comparison of rosiglitazone metabolite profiles in rat plasma between intraperitoneal and oral administration and identifcation of a novel metabolite by liquid chromatography-triple time of flight mass spectrometry (액체크로마토그라피-삼중비행시간질량분석기를 사용한 rosiglitazone의 복강 및 경구투여 후 대사체 비교 분석)

  • Park, Minho;Na, Sook-Hee;Lee, Hee-Joo;Shin, Byung-Hee;An, Byung-Jun;Shin, Young G.
    • Analytical Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.132-138
    • /
    • 2015
  • Rosiglitazone metabolites in rat plasma were analyzed after intraperitoneal and oral administration to rats. Seven metabolites (M1-M7) were detected in rat plasma (IP and PO), and the structures were confirmed using liquid chromatography-triple time of flight (TOF) mass spectrometry; as a result, the most abundant metabolite was M5, a de-methylated rosiglitazone. Other minor in vivo metabolites were driven from monooxygenation and demethylation (M2), thiazolidinedione ring-opening (M1, M3), mono-oxygenation (M4, M7), and mono-oxygenation followed by sulfation (M6). Among them, M1 was found to be a 3-{p-[2-(N-methyl-N-2-pyridylamino)ethoxy]phenyl}-2-(methylsulfinyl)propionamide, which is a novel metabolite of rosiglitazone. There was no significant difference in the metabolic profiles resulting from the two administrations. The findings of this study provide the first comparison of circulating metabolite profiles of rosiglitazone in rat after IP and PO administration and a novel metabolite of rosiglitazone in rat plasma.

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

Selective Catalytic Reduction of NO on Manganese Sulfates (망간황화물을 이용한 NO의 선택적 촉매 환원)

  • Jeong, Soon Kwan;Park, Tae Sung;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.473-478
    • /
    • 2008
  • In this experimental, selective catalytic reduction (SCR) of NO with NH3 over manganese sulfates and manganese sulfates was investigated with catalytic activity, kinetics, temperature programmed reduction (TPR) and TGA. Manganese oxides showed high catalytic activity for SCR at temperature below $200^{\circ}C$. In case of manganese sulfates, the temperature at which SCR of nitric oxide appears shifted to high temperature with sulfation degree, and the maximum catalytic efficiency decreased. The temperature of the onset of reduction for manganese oxides and manganese sulfates is about $160^{\circ}C$ and over $280^{\circ}C$, respectively. We suggest that the onset of reduction in TPR correlates with the onset of SCR activity. Because the pre-exponential factor of manganese sulfates is lower as 1/1000 times than that of other catalysts, catalytic activity of manganese sulfates for NO showed low. The reduction temperature of natural manganese ore which consists of various metal oxides showed lower than that of pure manganese oxides.

Immunosuppressive Effects of Safrole in BALB/c Mice

  • Kim, Byung-Sam;Jeong, Tae-Cheon;Choe, Suck-Young;Yang, Kyu-Hwan
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.191-203
    • /
    • 1992
  • The immunosuppressive effects of safrole were studied in female BALB/c mouse. Mice were given 100,200and 400mg safrole/kg daily for 14days and evaluated on day 15. The day 4 immunogloblin-M antibody response to T-dependent antigen, sheep red blood cells (SRBC) was inhibited dose-dependently in all doses studied. In vitro antibody response to polyclonal antigen, lipopolysaccharide (LPS) by spleen cell suspensions from safrole-treated mice were also significantly inhibited. When safrole was treated for 14days to mice, and mitogen-induced proliferation of splenocytes were assayed on day 15, there were significant suppression of responses to B-cell mitogen, LPS and T-cell mitogen concanavalin A(Con A) at a dose of 400mg safrole/kg. Direct addition of safrole on the splenocyte culture also produced a dose dependent suppression on in vitro antibody response to LPS, and mitogen-induced lymphoproliferatin at doses of 100,200,400 and 800${\mu}M$ safrole. The role of metabolic activation in safrole-induced suppression of in vitro antibody response was studied using splenocyte-hepatocyte coculture system. The suppression of in vitro antibody respose to LPS by safrole was not altered when safrole were incubated in the splenocyte-hepatocyte system for 4hr as compared with direct addition of safrole in splenocytes culture. Neither the addition of salicylamide, sulfotransferase inhibitor, nor the addation of inorganic sulfate, sulfation cofactor to the splenocyte-hepatocyte coculture, altered the suppression of antibody response by safrole. These results suggest that the immunosuppression by safrole may not by produced by the reactive metabolites which are mediated in carcinogenesis of safrole.

  • PDF

Glycosyl-linkages of Acid Soluble Polysaccharide from Green Laver, Enteromopha prolifera (가시파래 산성 수용성 다당의 구성당 결합 특성)

  • Koo Jae Geun;Choi Yong Seok;Ha Jin Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.524-528
    • /
    • 2002
  • Green layer, Enteromorpha prolifera, is regarded as one of important materials for food processing in Korea. The acidic water-soluble polysaccharide (CPC-PS) isolated from the alga with hot water and cetylpyridium chloride was mainly constituted of rhamnose, xylose, uronic acid and sulfate. To determine the glycosyl-linkages and positions of sulfate by methylation, the CPC-PS was reduced and/or sulfates. A marked increase of glucose content in the reduced polysaccharide indicated that glucuronic acid was a major sugar in the polymer and sulfation was deduced to occur on O-3 of rhamnose and O-2 of xylose. According to the methylation analysis of the native, reduced, desulfated and reduced-desulfated polymers, CPC-PS mainly composed of 1,4- and 1,2,3-linked rhamnose 3-sulfate, 1,4-linked xylose 2-sulfate, 1,4-linked xylose and 1,4-linked glucuronic acid. Minor 1,4-linked rhamnose and 1,4,6-linked galactose residues were also detected.

Anticoagulation Activities of Low Molecular Weight Sulfated Chitosan and Sulfated Sodium Alginate (저분자량의 황산화 키토산과 황산화 알진산 나트륨의 항응고성)

  • 김공수;이지원;조석형
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.583-588
    • /
    • 2003
  • Sulfated chitosan and sulfated sodium alginate were synthesized by sulfating reaction of low molecular chitosan and low molecular sodium alginate with SO$_3$-pyridine complex. When the weight ratio of SO$_3$-pyridine complex to polysaccharide was 1:5, the degrees of sulfation were the highest at 2.75 and 2.53 respectively. The anticoagulation effect was the highest when the molecular weight was 8.0${\times}$10$^3$ Da, and the anticoagulation activity was the highest at 91% of that of heparin when sulfated chitosan and sulfated sodium alginate were mixed at a weight ratio of 1:1. The anticoagulation activity was highest at 84% of that of heparin in the active plastin trombo test (aPTT) when sulfated chitosan and sulfated sodium alginate were mixed at a weight ratio of 1:1.

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.

FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae

  • Fernando, I.P. Shanura;Sanjeewa, K.K. Asanka;Samarakoon, Kalpa W.;Lee, Won Woo;Kim, Hyun-Soo;Kim, Eun-A;Gunasekara, U.K.D.S.S.;Abeytunga, D.T.U.;Nanayakkara, Chandrika;de Silva, E.D.;Lee, Hyi-Seung;Jeon, You-Jin
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • Polysaccharides of marine algae exhibit different structural characteristics and interesting biological functions. In this study, crude polysaccharides (CP) of eleven Sri Lankan marine algae obtained through hot water extraction and ethanol precipitation were investigated for DPPH, alkyl, and hydroxyl radical scavenging activities using electron spin resonance spectrometry and for intracellular reactive oxygen species scavenging activity in the Chang liver cell line. Characterization of CPs was done by Fourier transform infrared (FTIR) spectroscopy and by analysis of the monosaccharide composition. Time-dependent density functional theory quantum-chemical calculations at the RB3LYP/6-31G(d,p) level for constructed dimeric units of the corresponding polysaccharides were used to resolve the FTIR spectra. CPs from Chnoospora minima showed the highest DPPH and alkyl radical scavenging activities and higher intracellular reactive oxygen species scavenging effects for both AAPH and $H_2O_2$ induced ROS production in "Chang" cells. The major polysaccharide constituent in C. minima CP was identified as fucoidan and it displayed a higher sulfate content. The degree of sulfation of these polysaccharides suggests a positive correlation with the observed antioxidant properties.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.