Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.2.132

Comparison of rosiglitazone metabolite profiles in rat plasma between intraperitoneal and oral administration and identifcation of a novel metabolite by liquid chromatography-triple time of flight mass spectrometry  

Park, Minho (College of Pharmacy, Chungnam National University)
Na, Sook-Hee (BioCore)
Lee, Hee-Joo (BioCore)
Shin, Byung-Hee (AB Sciex Korea)
An, Byung-Jun (AB Sciex Korea)
Shin, Young G. (College of Pharmacy, Chungnam National University)
Publication Information
Analytical Science and Technology / v.28, no.2, 2015 , pp. 132-138 More about this Journal
Abstract
Rosiglitazone metabolites in rat plasma were analyzed after intraperitoneal and oral administration to rats. Seven metabolites (M1-M7) were detected in rat plasma (IP and PO), and the structures were confirmed using liquid chromatography-triple time of flight (TOF) mass spectrometry; as a result, the most abundant metabolite was M5, a de-methylated rosiglitazone. Other minor in vivo metabolites were driven from monooxygenation and demethylation (M2), thiazolidinedione ring-opening (M1, M3), mono-oxygenation (M4, M7), and mono-oxygenation followed by sulfation (M6). Among them, M1 was found to be a 3-{p-[2-(N-methyl-N-2-pyridylamino)ethoxy]phenyl}-2-(methylsulfinyl)propionamide, which is a novel metabolite of rosiglitazone. There was no significant difference in the metabolic profiles resulting from the two administrations. The findings of this study provide the first comparison of circulating metabolite profiles of rosiglitazone in rat after IP and PO administration and a novel metabolite of rosiglitazone in rat plasma.
Keywords
Rosiglitazone; Triple time of flight mass spectrometer; Metabolic profile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Lehmann, L. B. Moore, T. A. Smitholiver, W. O. Wilkison, T. M. Willson and S. A. Kliewer, J. Biol. Chem., 270(22), 12953-12956 (1995).   DOI   ScienceOn
2 A. R. Saltiel and J. M. Olefsky, Diabetes, 45(12), 1661-1669 (1996).   DOI
3 J. Kohlroser, J. Mathai, J. Reichheld, B. F. Banner and H. L. Bonkovsky, Am. J. Gastroenterol, 95(1), 272-276 (2000).   DOI
4 K. V. N. Menon, P. Angulo and K. D. Lindor, Am. J. Gastroenterol, 96(5), 1631-1634 (2001).   DOI   ScienceOn
5 R. Alvarez-Sanchez, F. Montavon, T. Hartung and A. Pahler, Chem. Res. Toxicol., 19(8), 1106-1116 (2006).   DOI   ScienceOn
6 R. Alvarez-Sanchez, F. Montavon, T. Hartung and A. Pahler, Chem. Res. Toxicol., 19(8), 1106-1116 (2006).   DOI   ScienceOn
7 P. J. Cox, D. A. Ryan, F. J. Hollis, A. M. Harris, A. K. Miller, M. Vousden and H. Cowley, Drug Metab. Disposit., 28(7), 772-780 (2000).
8 A. Aghazadeh-Habashi, A. Ibrahim, J. Carran, T. Anastassiades and F. Jamali, J. Pharm. Sci., 9(3), 359-364 (2006).
9 C. E. C. A. Hop, Z. Wang, Q. Chen and G. Kwei, J. Pharm. Sci., 87(7), 901-903 (1998).   DOI   ScienceOn
10 M. Uchiyama, H. Iwabuchi, F. Tsuruta, K. Abe, M. Takahashi, H. Koda, M. Oguchi, O. Okazaki and T. Izumi, Drug Metab. Disposi., 39(4), 653-666 (2011).   DOI   ScienceOn
11 S. L. Pearson, M. A. Cawthorne, J. C. Clapham, S. J. Dunmore, S. D. Holmes, G. B. T. Moore, S. A. Smith and M. Tadayyon, Bioche. Biophys. Res. Commun., 229(3), 752-757 (1996).   DOI   ScienceOn