망간황화물을 이용한 NO의 선택적 촉매 환원

Selective Catalytic Reduction of NO on Manganese Sulfates

  • 정순관 (한국에너지기술연구원 청정석탄 연구센터) ;
  • 박태성 (이산화탄소저감 및 처리기술개발사업단) ;
  • 홍성창 (경기대학교 환경공학과)
  • 투고 : 2008.01.02
  • 심사 : 2008.01.09
  • 발행 : 2008.06.30

초록

망간황화물이 NO의 선택적 촉매 환원에 미치는 영향을 반응성 및 속도론적평가와 TPR(Temperature Programmed Reduction), TGA분석을 통하여 고찰하였다. 망간산화물은 $200^{\circ}C$ 이하의 저온에서 우수한 질소산화물 전환을 보였으나, 망간황화물의 경우 황화정도에 따라 질소산화물 전환은 고온으로 전이하였다. 또한 질소산화물 전환율도 황화정도에 따라 감소하였다. TPR 실험결과 망간산화물들은 $160^{\circ}C$ 이하의 낮은 온도에서 환원이 시작되었으나 망간황화물은 $280^{\circ}C$ 이상의 온도에서 환원이 시작되었다. TPR 실험을 통한 환원 시작온도는 촉매의SCR 시작 온도와 관련이 있는 것으로 판단된다. 망간황화물의 활성화에너지는 다른 촉매에 비해 낮게 나타났으나 pre-exponential 상수 크기가 다른 촉매에 비해 1/1000배 만큼 작아 NO에 대한 활성이 낮게 나타났다. 천연망간광석은 함유된 다양한 금속산화물의 영향으로 순수한 망간산화물보다 낮은 온도에서 재생되었다.

In this experimental, selective catalytic reduction (SCR) of NO with NH3 over manganese sulfates and manganese sulfates was investigated with catalytic activity, kinetics, temperature programmed reduction (TPR) and TGA. Manganese oxides showed high catalytic activity for SCR at temperature below $200^{\circ}C$. In case of manganese sulfates, the temperature at which SCR of nitric oxide appears shifted to high temperature with sulfation degree, and the maximum catalytic efficiency decreased. The temperature of the onset of reduction for manganese oxides and manganese sulfates is about $160^{\circ}C$ and over $280^{\circ}C$, respectively. We suggest that the onset of reduction in TPR correlates with the onset of SCR activity. Because the pre-exponential factor of manganese sulfates is lower as 1/1000 times than that of other catalysts, catalytic activity of manganese sulfates for NO showed low. The reduction temperature of natural manganese ore which consists of various metal oxides showed lower than that of pure manganese oxides.

키워드

참고문헌

  1. Bosch, H. and Janssen, F., "Catalytic Reduction of Nitrogen Oxides, A Review on the Fundamentals and Technology," Catal. Today, 2(4), 369-521(1988) https://doi.org/10.1016/0920-5861(88)80002-6
  2. Shin, B. S., Lim, S. Y. and Choung, S. J., "$WO_3\;and\;MoO_3$ Addition Effect on $V_2O_5/TiO_2$ as Promoters for Removal of $NO_x$ and $SO_x$ from Stationary Sources," Korean J. Chem. Eng., 11(4), 254-260(1994) https://doi.org/10.1007/BF02697392
  3. Park, S. Y., Yoo, K. S. and Lee, J. K., "Effects of Organic and Inorganic Additives on Selective Non Catalytic Reduction Reaction of $NO_x$ in a Pilot Plant Scale Flow Reactor," Korean J. Chem. Eng., 44(5), 540-546(2006)
  4. Yeh, J. T., Demski, R. J., Strakey, J. P. and Joubert, J. I., "Combined $SO_2/NO_x$ Removal from Flue Gas," Environ. Prog., 4(4), 223-228(1985) https://doi.org/10.1002/ep.670040405
  5. Yeh, J. T., Demski, R. J., Strakey, J. P. and Joubert, J. I., "Process Simulation of the Fluidized-Bed Copper Oxide Process Sulfation Reaction," Environmental Progress, 4(2) 44-50(1987)
  6. Fukuzawa, H. and Ishihara, Y., CRIEPI report E279001, Japan (1979)
  7. Jeong, S. K., Park, T. S. and Hong, S. C., "Simultaneous $SO_x/NO_x$ Removal in a Fluidized Bed Reactor Using Natural Manganese Ore," J. Chem. Tech. & BioTech., 76, 1080-1084(2001) https://doi.org/10.1002/jctb.490
  8. Jeong, S. K., Park, T. S., Doh, D. S. and Hong, S. C., "Combined $DeSO_x/DeNO_x$ Reactions on a Natural Manganese Ore in a Fluidized Bed Reactor," J. Chem. Eng. Jpn., 34, 166-170(2001) https://doi.org/10.1252/jcej.34.166
  9. Kapteijn, F., Langeveld, A. D. V., Moulijn, J. A. and Andreini, A., "Alumina-Supported Manganese Oxide Catalysts I. Characterization : Effect of Precursor and Loading," J. Cat., 150, 94-104(1994) https://doi.org/10.1006/jcat.1994.1325
  10. Barner, H. E. and Mantell, C. L., "Kinetics of Hydrogen Reduction of Manganese Dioxide," I&EC Proc. Des. Dev., 7(2), 285- 294(1968)
  11. Mah, A. D., U.S. Bureau of Mines RI5600(1960)
  12. Ingraham, T. R. and Marier, P., "Kinetics of the Formation of $MnSO_4\;from\;MnO_2,\;Mn_2O_3,\;and\;Mn_3O_4$ and Its Decomposition to $Mn_2O_3\;or\;Mn_3O_4$," Trans Metall. Soc. AIME, 242, 2039(1968)
  13. Otsuka, K., Tanaka, K. and Morikawa, A., "The Reaction between $SO_2\;and\;MnO_2$ and the Role of the Sulfate Complex in the $SO_2$-induced Isomerization of cis-2-Butene," Bull. Chem. Soci. of Japan, 52, 2069-2074(1979) https://doi.org/10.1246/bcsj.52.2069
  14. Bjornbom, E. N., Druesne, S., Zwinkels, M. F. M. and Jaras, S. G., "Study on the Regeneration of Copper-Manganese Sorbent for Removal of Sulfur Dioxide from Flue Gases," Ind. Eng. Chem. Res., 34, 1853-1858(1995) https://doi.org/10.1021/ie00044a036
  15. Strohmeier, B. R. and Hercules, D. M., "Surface Spectroscopic Characterization of Mn/$Al_2O_3$ Catalysts," J. Phys. Chem. 88, 4922-4927(1984) https://doi.org/10.1021/j150665a026