Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.12.1

FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae  

Fernando, I.P. Shanura (Department of Marine Life Science, Jeju National University)
Sanjeewa, K.K. Asanka (Department of Marine Life Science, Jeju National University)
Samarakoon, Kalpa W. (Industrial Technology Institute (ITI))
Lee, Won Woo (Department of Marine Life Science, Jeju National University)
Kim, Hyun-Soo (Department of Marine Life Science, Jeju National University)
Kim, Eun-A (Department of Marine Life Science, Jeju National University)
Gunasekara, U.K.D.S.S. (Industrial Technology Institute (ITI))
Abeytunga, D.T.U. (Colombo Science and Technology Cell, Faculty of Science, University of Colombo)
Nanayakkara, Chandrika (Colombo Science and Technology Cell, Faculty of Science, University of Colombo)
de Silva, E.D. (Colombo Science and Technology Cell, Faculty of Science, University of Colombo)
Lee, Hyi-Seung (Marine Natural Products Laboratory, Korea Ocean Research and Development Institute)
Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
Publication Information
ALGAE / v.32, no.1, 2017 , pp. 75-86 More about this Journal
Abstract
Polysaccharides of marine algae exhibit different structural characteristics and interesting biological functions. In this study, crude polysaccharides (CP) of eleven Sri Lankan marine algae obtained through hot water extraction and ethanol precipitation were investigated for DPPH, alkyl, and hydroxyl radical scavenging activities using electron spin resonance spectrometry and for intracellular reactive oxygen species scavenging activity in the Chang liver cell line. Characterization of CPs was done by Fourier transform infrared (FTIR) spectroscopy and by analysis of the monosaccharide composition. Time-dependent density functional theory quantum-chemical calculations at the RB3LYP/6-31G(d,p) level for constructed dimeric units of the corresponding polysaccharides were used to resolve the FTIR spectra. CPs from Chnoospora minima showed the highest DPPH and alkyl radical scavenging activities and higher intracellular reactive oxygen species scavenging effects for both AAPH and $H_2O_2$ induced ROS production in "Chang" cells. The major polysaccharide constituent in C. minima CP was identified as fucoidan and it displayed a higher sulfate content. The degree of sulfation of these polysaccharides suggests a positive correlation with the observed antioxidant properties.
Keywords
Chnoospora minima; electron spin resonance; FTIR analysis; polysaccharides; Sri Lankan;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Kandasamy, S., Khan, W., Kulshreshtha, G., Evans, F., Critchley, A. T., Fitton, J. H., Stringer, D. N., Gardiner, V. -A. & Prithiviraj, B. 2015. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae 30:147-161.   DOI
2 Kang, M. -C., Kim, S. -Y., Kim, E. -A., Lee, J. -H., Kim, Y. -S., Yu, S. -K., Chae, J. B., Choe, I. -H., Cho, J. H. & Jeon, Y. -J. 2015. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model. Carbohydr. Polym. 127:38-46.   DOI
3 Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G. & Vasanthi, H. R. 2010. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem. Toxicol. 48:187-192.   DOI
4 Cardenas-Jiron, G., Leal, D., Matsuhiro, B. & Osorio-Roman, I. O. 2011. Vibrational spectroscopy and density functional theory calculations of poly-D-mannuronate and heteropolymeric fractions from sodium alginate. J. Raman Spectrosc. 42:870-878.   DOI
5 Chandia, N. P., Matsuhiro, B., Mejias, E. & Moenne, A. 2004. Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. J. Appl. Phycol. 16:127-133.   DOI
6 Chandia, N. P., Matsuhiro, B. & Vasquez, A. E. 2001. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr. Polym. 46:81-87.   DOI
7 Chandler, S. F. & Dodds, J. H. 1983. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2:205-208.   DOI
8 Christiaen, D. & Bodard, M. 1983. Spectroscopie infrarouge de films d'agar de Gracilaria verrucosa (Huds.) Papenfuss. Bot. Mar. 26:425-427.
9 Coppejans, E., Leliaert, F., Dargent, O., Gunasekara, R. & De Clerck, O. 2009. Sri Lankan seaweeds: methodologies and field guide to the dominant species. Abc Taxa 6:1- 265.
10 Dodgson, K. S. & Price, R. G. 1962. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 84:106-110.   DOI
11 Lee, S. -H., Kang, S. -M., Sok, C. H., Hong, J. T., Oh, J. -Y. & Jeon, Y. -J. 2015. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae 30:163-170.   DOI
12 Kim, S. -Y., Kim, E. -A., Kang, M. -C., Lee, J. -H., Yang, H. -W., Lee, J. -S., Lim, T. I. & Jeon, Y. -J. 2014. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model. Algae 29:165-174.   DOI
13 Lakmal, H. H. C., Samarakoon, K. W., Lee, W., Lee, J. -H., Abeytunga, D. T. U., Lee, H. -S. & Jeon, Y. -J. 2014. Anticancer and antioxidant effects of selected Sri Lankan marine algae. J. Natl. Sci. Found. Sri Lanka 42:315-323.   DOI
14 Leal, D., Matsuhiro, B., Rossi, M. & Caruso, F. 2008. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 343:308-316.   DOI
15 Lee, S. -H., Ko, C. -I., Jee, Y., Jeong, Y., Kim, M., Kim, J. -S. & Jeon, Y. -J. 2013. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 92:84-89.   DOI
16 Engelmann, J., Volk, J., Leyhausen, G. & Geurtsen, W. 2005. ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. J. Biomed. Mater. Res. B Appl. Biomater. 75:272-276.
17 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.   DOI
18 Mahendran, M., Sirisena, D. M., Morisaki, M., Sano, F., Ikekawa, N. & Sivapalan, A. 1980. Sterols of some Sri Lankan marine algae. J. Natl. Sci. Counc. Sri Lanka 8:69-74.
19 Dunn, E. K., Shoue, D. A., Huang, X., Kline, R. E., MacKay, A. L., Carpita, N. C., Taylor, I. E. & Mandoli, D. F. 2007. Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular 'mannan weed', Acetabularia acetabulum. Plant Cell Physiol. 48:122-133.
20 Durairatnam, M. 1961. Contribution to the study of the marine algae of Ceylon. Bull. Fish. Res. Stn. Ceylon 10:1-181.
21 Fenoradosoa, T. A., Delattre, C., Laroche, C., Wadouachi, A., Dulong, V., Picton, L., Andriamadio, P. & Michaud, P. 2009. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 45:140-145.   DOI
22 Finkelstein, E., Rosen, G. M. & Rauckman, E. J. 1980. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200:1-16.   DOI
23 Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z. & Zhang, C. 2014. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar. Drugs 12:4883-4897.   DOI
24 Wijesinghe, W. A., Senevirathne, M., Oh, M. -C. & Jeon, Y. -J. 2011. Protective effect of methanol extract from citrus press cakes prepared by far-infrared radiation drying on $H_2O_2$-mediated oxidative damage in Vero cells. Nutr. Res. Pract. 5:389-395.   DOI
25 Wijesinghe, W. A. J. P. & Jeon, Y. -J. 2012a. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr. Polym. 88:13-20.   DOI
26 Wijesinghe, W. A. J. P. & Jeon, Y. -J. 2012b. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6-12.   DOI
27 Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162.   DOI
28 Mollet, J. -C., Rahaoui, A. & Lemoine, Y. 1998. Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). J. Appl. Phycol. 10:59-66.   DOI
29 Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A. & Reis, R. L. 2010. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr. Res. 345:2194-2200.   DOI
30 Matsuhiro, B. 1996. Vibrational spectroscopy of seaweed galactans. Hydrobiologia 326:481-489.
31 Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M. & Hara, Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 21:895-902.   DOI
32 Mathlouthi, M. & Koenig, J. L. 1987. Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem. 44:7- 89.
33 Vijayabaskar, P., Vaseela, N. & Thirumaran, G. 2012. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 10:421-428.
34 Nishiguchi, T., Jiang, Z., Ueno, M., Takeshita, S., Cho, K., Roh, S. W., Kang, K. -H., Yamaguchi, K., Kim, D. & Oda, T. 2014. Reevaluation of bactericidal, cytotoxic, and macrophage- stimulating activities of commercially available Fucus vesiculosus fucoidan. Algae 29:237-247.   DOI
35 Percival, E. 1979. The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. Phycol. J. 14:103-117.   DOI
36 Pereira, L., Gheda, S. F. & Ribeiro-Claro, P. J. A. 2013. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013:537202.
37 Pereira, L., Sousa, A., Coelho, H., Amado, A. M. & Ribeiro- Claro, P. J. A. 2003. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol. Eng. 20:223-228.   DOI
38 Wijesekara, I., Pangestuti, R. & Kim, S. -K. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 84:14-21.   DOI
39 Marais, M. -F. & Joseleau, J. -P. 2001. A fucoidan fraction from Ascophyllum nodosum. Carbohydr. Res. 336:155-159.   DOI
40 Fleita, D., El-Sayed, M. & Rifaat, D. 2015. Evaluation of the antioxidant activity of enzymatically-hydrolyzed sulfated polysaccharides extracted from red algae: Pterocladia capillacea. LWT Food Sci. Technol. 63:1236-1244.   DOI
41 Heo, S. -J., Cha, S. -H., Lee, K. -W. & Jeon, Y. -J. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21:149-156.   DOI
42 Hiramoto, K., Johkoh, H., Sako, K. & Kikugawa, K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 19:323-332.   DOI
43 Horwitz, W. & Latimer, G. W. Jr. 2005. Official methods of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD.
44 Jeon, C., Park, J. Y. & Yoo, Y. J. 2002. Characteristics of metal removal using carboxylated alginic acid. Water Res. 36:1814-1824.   DOI
45 Ji, C. -F., Ji, Y. -B. & Meng, D. -Y. 2013. Sulfated modification and anti-tumor activity of laminarin. Exp. Ther. Med. 6:1259-1264.   DOI
46 Tul'chinsky, V. M., Zurabyan, S. E., Asankozhoev, K. A., Kogan, G. A. & Khorlin, A. Y. 1976. Study of the infrared spectra of oligosaccharides in the region $1,000-40 cm^{-1}$. Carbohydr. Res. 51:1-8.   DOI
47 Praiboon, J., Chirapart, A., Akakabe, Y., Bhumibhamon, O. & Kajiwarac, T. 2006. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci. Asia 32(Suppl. 1):11- 17.
48 Premakumara, G. A. S., Ratnasooriya, W. D. & Tillekeratne, L. M. V. 1996. Isolation of a non-steroidal contragestative agent from Sri Lankan marine red alge, Gelidiella acerosa. Contraception 54:379-383.   DOI
49 Roberts, M. A. & Quemener, B. 1999. Measurement of carrageenans in food: challenges, progress, and trends in analysis. Trends Food Sci. Technol. 10:169-181.   DOI