• Title/Summary/Keyword: successive approximations

Search Result 29, Processing Time 0.02 seconds

Buckling Load of Columns with Same Volume and Length but Variable Cross-section along the Length (부피와 길이가 같은 변단면 기둥의 좌굴하중)

  • Lee, Hong-Kyu;Yoo, Jong-Ho;Lee, Seung-Won;Kim, Sun-Hee;Won, Yong-Suk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.77-85
    • /
    • 2015
  • In this paper, we present the result of investigations pertaining to the elastic buckling of simply supported columns with various cross-sectional dimensions but the same length and volume. In the investigations the accuracy of the analysis methods is studied and it was found that the result obtained by the successive approximations technique is the most accurate. In addition, the elastic buckling loads of columns with variable cross-section dimensions are obtained by the theoretical and numerical methods. From the results, it was found that the buckling loads obtained by the numerical methods are close to the buckling loads obtained by the successive approximations technique for the practical standpoints. Moreover, the buckling load of column with convexity in its middle is the highest while the buckling load of the tapered column is the lowest as expected.

SYMBOLIC COMPUTING ALGORITHM FOR THE METHOD OF SUCCESSIVE APPROXIMATIONS FOR NEAR-PARABOLIC ORBITS

  • M.A.Sharaf;Abdel-Naby-S.Saad;Samiha-A.Najmuldeen;Mona-Banaja
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.447-456
    • /
    • 1997
  • In this paper an accurate algorithm for the method of successive approximations for near-parabolic orbits is established symbolically. Numerical applications are given for motion predictions at fifteen epochs between the years 66 to 1835 for Halley's comet. and at fifteen epochs between the years 1417 to 1782 for Encke's comet. Comparisons with the standard Gauss method [4] show that the present algorithm is very accurate and efficient for motion pred-ications of near-parabolic orbits.

NUMERICAL SOLUTION OF A GENERAL CAUCHY PROBLEM

  • El-Namoury, A.R.M.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 1988
  • In this work, two numerical schemes arc proposed for solving a general form of Cauchy problem. Here, the problem, to be defined, consists of a system of Volterra integro-differential equations. Picard's and Seiddl'a methods of successive approximations are ued to obtain the approximate solution. The convergence of these approximations is established and the rate of convergence is estimated in every case.

  • PDF

Design of an optimal controller for the discrete time bilinear system by using a successive approximation method (이산시 쌍일차 계통에서 연속적 근사화 방법을 이용한 최적제어기 설계)

  • Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.591-593
    • /
    • 1999
  • The finite time optimum regulation problem of a discrete time bilinear system with a quadratic performance criterion is obtained in terms of a sequence discrete algebraic Lyapunov equations. Our new method is based on the successive approximations. This algorithm saves the computation time to solve the optimal problem, and the design procedure is illustrated for an example.

  • PDF

AN EXTENSION OF THE CONTRACTION MAPPING THEOREM

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • An extension of the contraction mapping theorem is provided in a Banach space setting to approximate fixed points of operator equations. Our approach is justified by numerical examples where our results apply whereas the classical contraction mapping principle cannot.

  • PDF

Buckling Strength of Wooden Column with Entasis at the Muryangsugeon in Buseoksa-Temple (부석사 무량수전 배흘림 목재 기둥의 좌굴강도)

  • Yoon, Soon-Jong;Kim, Hee-Soo;Yoo, Hyung-Joo;Han, Min-Hyuck;Kim, Jin-Kyung;Ji, Hye-In
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • In this paper we present the result of investigations pertaining to the buckling strength of Zelkova Serrata (Elm-like) tree column with entasis at the Muryangsujeon in Buseoksa-Temple, Korea. Wooden columns with entasis had been used in the construction of ancient architectural buildings in Korea. It was not known why did they design columns with entasis of the buildings. It is just presumed that the reason may be the compensation of optical illusion, aesthetics, and/or structural safety. The question is not answered even today and it may not be possible to answer clearly and easily. In the paper, the buckling analyses are conducted on both of the wooden column with entasis and the prismatic wooden column by the successive approximations technique and the finite element methods, respectively. The results of analyses are compared and discussed.

p-Version Finite Element Analysis of Cracked Panels Based on Linear Elastic Fracture Mechanics (선형탄성파괴역학 이론에 의한 균열판의 p-Version 유한요소해석)

  • 윤영필;우광성;박병기;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.19-26
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and the high accuracy and the rapid rate of convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution can be estimated with successive three p-version approximations by ascertaining the approximations is entered the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected tension.

  • PDF

Shape Optimization of a Micro-Static Mixer (마이크로 믹서의 형상 최적화)

  • 한석영;김성훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

Stress Analysis of Helical Spring Using DQM (미분구적법을 이용한 핼리컬 스프링의 응력해석)

  • Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.208-212
    • /
    • 2001
  • DQM(differential quadrature method) is applied to computation of two dimensional elasticity problems in helical spring. Elastic shear stresses in an axially loaded helical spring having rectangular and square cross sections are calculated. The results are compared with those obtained using the method of successive approximations. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF