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Stress Analysis of Helical Spring Using DQM
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Abstract : DQM(differential quadrature method) is applied to computation of two dimensional elasticity problems in
helical springs. Elastic shear stresses in an axially loaded helical spring having rectangular and square cross sections are
calculated. The results are compared with those obtained using the method of successive approximations. The differential
quadrature method gives good accuracy even when only a limited number of grid points is used.
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1. Introduction

The problem of determining elastic stresses in hel-
ical springs has been treated mathematically by many
investigators. The analysis made by Wah!” is one of
the most widely accepted analyses based on strength-
of-materials theory. Wahl"” used a method analogous to
Winkler's method described by Timoshenko” for find-
ing bending stresses in curved beams. In solving the
differential equations of equilibrium and compatibility
by an iterative method, Gohner? made probably the
first complete and generally applicable elasticity-theory
analysis of the stresses using the method of successive
approximation.

Here the differential quadrature method(DQM) is ap-
plied to two dimensional elasticity problems. Elastic
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shear stresses in an axially loaded helical springs hav-
ing rectangular and square cross sections are calculated
by DQM. The results are compared with those ob-
tained using the method of successive approximation
by Gohner.”

2. Governing Differential Equations

Consider a ring sector under the action of two equal
and opposite forces P along the axis through the center
of the ring and perpendicular to the plane of the ring
shown in Fig. 1. This derivation is based on Gohner's
analysis of a solid spring. Fig. 2 shows the coordinate
system. The basic differential equation is

0°0 , 570 _3 .40 4, _ (1

r? 9 z° v dr

where, @ is the stress function, r is the radius from
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Fig. 1. Ring sector under pure twist
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Fig. 2. Coordinate system for ring sector

helix axis to any point in spring, z is the axial position
coordinate of any point in the section (see Fig. 1), and
c is a constant.

In this case of torsion only the shearing-stress com-
ponents r,, and r,, are different from zero and can

be written as

__ =GR 30 - GR! 30 (5
T ve rz 9z ° T gz 7,2 9r

where G is the modulus of rigidity and R is the radius
of the ring. The corresponding value of the torque is

M=~ [[Ce 02+ 1 4.0 drd )
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The unknown constant ¢ can be determined from
the torque equation.

Introducing new coordinates & and ¢ described by
Timoshenko and Goodier,4)

€=R- 7, (=2 4

Replacing r and z by £ and ¢, one can rewrite Eq.
(1) as

220 3 a0
R1-—%) %

2%
Sert g +2c=0 (5

Using the new coordinates, the shearing-stress com-
ponents given by Eq. (2) and the corresponding value
of the torque given by Eq. (3) can be written as

G 90 —G__ 90
=G0, - =C %
Ta-gr % Tt gL %

M= | [(cot+10(R-8)dtde @)

Using dimensionless distance coordinates X and Y,
one can rewrite Egs. (5), (6), and (7), respectively, as

3t 3% 3 30
Fxrt P avt TR (¢ 1, X ®)
2a 2
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+ 74.(R—2aX+ a))dYdX

where X=( £ + a)/2a and Y=( ¢ + b)/’2b.

Considering the boundary conditions, the resultant
surface shear stress at the boundary must be in the
direction of the tangent to the boundary; hence

GR

00 dt, 30 de
B30 4 +45-25)=0 (12)
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This shows that the stress function ¢ must be con-
stant along the boundary of the cross section. In the
case of singly connected boundaries, this constant can
be chosen arbitrarily, and can be equal to zero.

3. Differential Quadrature Method

The Differential Quadrature Method(DQM) was in-
troduced by Bellman and Casti” By formulating the
quadrature rule for a derivative as an analogous exten-
sion of quadrature for integrals in their introductory
paper, they proposed the differential quadrature method
as a new technique for the numerical solution of initial
value problems of ordinary and partial differential equa-
tions. It was applied for the first time to static analysis
of structural components by Jang, Bert and Striz.” The
versatility of the DQM to engineering analysis in gen-
eral and to structural analysis in particular is becoming
increasingly evident by the related publications of
recent years. Kang and Han” and Kang® applied the
method to the analysis of a curved beam using classi-
cal and shear deformable beam theories and vibration
analysis of curved beams. From a mathematical point
of view, the application of the differential quadrature
method to a partial differential equation can be ex-
pressed as follows:

LR} = ZWs ) for i, j=1.2....,.N (13)

where L denotes a differential operator, x; are the dis-
crete points considered in the domain, ; are the row
vectors of the N values, Ax;) are the function values
at these points, W; are the weighting coefficients at-
tached to these function values, and N denotes the
number of discrete points in the domain. This equation,
thus, can be expressed as the derivatives of a function
at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function Ax) is taken as
flxy=x*"for bk = 1,2,3,...,N (14)

If the differential operator L represents an »* deriva

210

7|

z
tive, then

g'\W,;,x}"l=(k—l)(k—2)~-(k~ wx " for

i, k=12,...,N (15)

This expression represents N sets of N linear alge-
braic equations, giving a unique solution for the weight-
ing coefficients, W, since the coefficient matrix is a
Vandermonde matrix which always has an inverse, as
described by Hamming.”

4. Application

The differential quadrature approximations of the gov-
eming equation and the boundary conditions are given
below.

Applying the DQM to the governing equation given
by Eq. (8), gives

2
g B,‘;, 01{,"{' (_t;) ﬁ Bjk mile
=1 =1

+ (16)
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where A, and B, are the weighting coefficients for
the first- and second-order derivatives, respectively,
along the dimensionless axis.

Applying the DQM to the stress equations, given by
Egs. (9) and (10), gives

-G 1 N
i %X, a2 x Ax%x (7
I-=% *%) =l
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Applying the DQM to the torque equation given by
Egs. (11), gives

M, = (2a)(2b) g‘ /g‘\A ,‘Aj(l',g(,j) (ZbY,'— b)
+r &(g)(R*Z(lX,"F a))

(19)
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where A; are the weighting coefficients for the first-

order integral along the dimensionless axis.
Applying the DQM to the boundary conditions
gives

O,=0y=0 at X=0,1 (20)

Pr=0x=0 at Y=01 2N

This set of equations together with the appropriate bound-
ary conditions give a total of NXN number of simulta-
neous equations.

5. Numerical Results and Comparisons

The greatest shearing stress is calculated by the dif-
ferential quadrature method. The third successive ap-
proximations for a square cross section with sides of
length 2a given by Gohner” are compared with DQM.
The third successive approximations for a rectangular
cross section with sides of length 2a and thickness 2b
given by Gohner” are also compared with DQM.

Table 1 presents the results of convergence studies
relative to the number of grid points N with a/R = 1/20.
The data show that the accuracy of the numerical
solution increases with increasing N. Then, numerical
instabilities arise if N becomes too large (possibly not
greater than 19). In Table 2, the third approximations
for the maximum stress at the inner point by Gohner”
are compared with those by the DQM using thirteen
grid points for the case of square cross section with
sides of length 2a. From Table 2, it is seen that the
difference between DOM and the third approximation
solution in the shearing stress is increasing ratio by in-
creasing a/R, and the stress is increasing by increasing
sides of length. The values of circular and square cross
are approximately 0.7448 and 0.6754 respectively when
/R is 1/10 (see Timoshenko and Goodier.” In Table
3, the solutions for the maximum stress at the inner
point by Gohner” are compared with those by the DQM
for the case of rectangular cross section with a/R = 1/4
and a/b=4. All results are computed with thirteen grid
points (see Kang).S)
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Table 1. The greatest shearing stress Te2 a7/PR for a range
of grid pointsi square cross section with sides of
length 2a

Number of grid points
7 9 1 13 15

Gohner”

0.6368 | 0.6388 | 0.6365 | 0.6366 | 0.6367 | 0.6367

Table 2. The greatest shearing stress s, a7/PR for a ratio
of a/R; square cross section with sides of length 2a

a/R Gohner” DQM
1/20 0.6368 0.6367
1/10 0.6754 0.6731
1/8 0.6953 0.6913
1/5 0.7574 0.7462
1/4 0.8010 0.7834
1/3 0.8773 0.8447

Table 3. The greatest shearing stress s, bY/PR for a ratio
of a/R and a/b: rectangular cross section with sides

of length 2a and 2b
a/R al/b Gohner” DQM
1/4 4 0.124 0.120

6. Conclusions

The differential quadrature method was used to com-
pute the shearing stress of the rectangular cross sec-
tion. The present method gives results which agree
very well with the third successive approximations for
the square cross section and rectangular cross section
while requiring only a limited number of grid points.
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