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NUMERICAL SOLUTION OF A GENERAL CAUCHY PROBLEM
By A.R.M. El-Namoury

Abstract: In this work, two numerical schemes are proposed for solving a
general form of Cauchy problem. Here, the problem, to be defined, consists of
a system of Volterra integro-differential equations. Picard’s and Seidel’a methods
of successive approximations are ued to obtain the approximate solution. The
convergencs of these approximations is established and the rate of convergence

is estimated in every case.
1. Introduction

Consider in particular the first-order equations

i;Jf(t) ¢
dt— Tfr‘ [f, yl. yzu =0 ,Vu: f g‘-(t! S, J’l. J’Q, Loy J’n)dS]. ]
t
L. ' 1
with the conditions ( )
2, () =a (0<t,<t, <<t <T, 0<t<T, i=1I, m), }

where a, are constants and the functions f (¢, Yo Top = Vs Zit)). gt s, 3,

P s F N i7=1, n) are defined in the domains:
.-9I lof fl.): [0, T'] % [nfl—R. a1+RJ 5 [ag—]i', (J(EJ.—RI Koo X
Pt {anﬂR, ar"ﬂ:AR] X [—R, R],
D,(of g)=[0, T) X [0, T] X [;—R, a,+R] XX [x,—R, a, +R].
Cauchy problem (1) arises in the equilibrium situations that take place in
studying thin elastic shells of revolution and in nuclear collision problems[6], [4].
Section 2 is concerned with the application of Picard’s method to prove the
existence and uniqueness of the solution of Cauchy problem (1). The acquired
results are given in theorem 1. Section 3 deals with the construction of Seidel
successive approximations (since methods using the most up-to-date information
tend to be better than those using older information) for solving the considered
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problem numerically, and the relevant theorem is proved.

2. Picard's method of successive approximations

Picard’s method when applied to system (1) gives:

yf.o) (#) (the initial approximation) =ar,, (0<t<T), yEH])(t,-):a’,-, "
(k+1)

dy, (D k) (k & ; B (& '
rdf =f,' (Z, yl )u y:(g )’ 2 J’n ); -[; gl‘(t' S. yl )' J’é )' [ w

v, y®)ds), k=0, 1, 2, -]

THE SUFFICIENT CONDITIONS FOR CONVERGENCE 2.1. Assume that the two

sets of functions f,(f, y,, ¥, = 3,, Z) and g1, s, ¥, ¥,

=+, y,) satisfy the
following conditions:

a) they are continuous and bounded for any (¢, Yo Yo

i Yo Z(I))EDl and
. s ¥y Yo = ¥)ED,, le.

If;t 9y Py s 30 ZWD)| <M, M,=const.,
lg,(t 5. 0 Yoo = 3, )|<M,, M,=const.,

b) for arbitrary (, N Zl(t)). (t, Vi B 5 3 Z_?(t))c—:D1 and (4,
S Ipp Yo s ») W s ¥, ¥, o ¥I)ED, they satisfy Cauchy-Lipschitz con-
dition, i.e.

i 30 Yors 30 2K 3y T oo Fpp 2]
<L,|max|y,—¥;|+1Z,—Z,|], L ,=Const.,
1&gt 5 ¥ps Voo 00 3 =8, (E 80 Fa T on I
SLz maxily'.—-jl.!. L2=C0nst.
¢) if M=max (M,, M,, L,, L}, then MT<R.

Using mathematical induction and conditions a), b), ¢) it can be shown that

9@ —a,|<R, G=1, m; £=0, 1, 2, =,

We shall prove that the sequence of functions {yf.k)(l)} k=0, 1, ---, under the

conditions a), b) and ¢) converges uniformly (i.e. a Cauchy sequence). In fact
for 0<</<<T', 1<<{<Im, we have

P -yP 1=y e,
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! 5

0 @ (0 o (O 0
:’f fi [S, yl( )l 3’2 g= “=P0g J’u H f gi(sn T, J’l N y2 )- Lhars y,(' ))dT]dS
e t

i
::M1|L ds| =M, |t-t,,

hence for k=1, 2, 3, -+, we get

{
(k) (k—1) (k—1) (kA-2)
ly; " (D—, (t)ISLl\f! [mftxu,. -y )
iq

-H',zfs m?xfy(#_l}—yf.k_z) Idr]ds‘
t

i

t
<L, ‘ f [max Iy(.knl)—ysk_z) |
| !i i 1 I

1)

t
=] k-2
—C—L,,f maxlyf.* )—yf )ldt}ds
2J, "

for #=2 and 1<</<<m, we obtain

@ @ (t—t))
@D —y D<M L7 U+La—1)), ¢<<T),

2

@ @ ¢,
1y, =y, (DISM L —57— [1+L,(¢,— 0], (0<t<t).

Similarly, if £=3, then for 1<</<<m, we have

@) @ . A1)’
7P -yP D<M L~ L LU—1D), L+LU—t)], €<t<D),

3

3 2 2 @,~0
Iyi (O (t)ISMlLI3—![l+L2(tu—t)] 1+L,(¢t—D], (O=<t=t).
Again, using mathematical induction for 1<<{<_n, we have
k
p (=) k-2

yP-yF Pwism Ly

[1+L,t—t)],
¢<t<T) @

L
T [1 +L2(t —il)]

k

. L @ ~D r
P -yt P01 <M Ly e — 1+ L, -0

L HL D,
osi<t) @

Therefore, the sequence of approximation {y,(.k) () (0=t<T) converges unifor-

mly, i.e.
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hmy Y= y,(D.

Upon integrating the equations in (2) and taking the limit as Z becomes very

large (o), we deduce that y,(#) (1=<{<\n) represent a solution for problem (1).

The uniqueness of the solution of problem (1), under the conditions a), b) and

c), and be proved by contradiction [3], [5].
ESTIMATING THE RATE OF CONVERGENCE 2.2. From systems (1), (2) we have
k—1)

1 ’ =
-y, ®I<L, | f {max|y* 0=yl
WLf max]yck D y'.{d:}ds‘

(k—1)
= "
Ll‘f:, {mfl}sly!. yiﬂ

4
+L-,,f maXIy,(-k' 1)—y,-\df]dS‘. (5)
2, ™

9@ 3,0 | <RL(U—1) WL, —1)], (¢ <t<T),

IFor £=1 and 1<<{<{m, the inequality (5) leads to

1y P~y OI<RL O 1+L,¢t,~D], O<t<t).

Using mathematical induction and the set of conditions a), b) and c), the rate

of convergence for Picard’s appruximations can be estimated as follows:

(L, (t— )}

Py, OISR L G-t L8,

¢<t<T), (6

) L, —D - ,
oty D~ D SR— T +L,@, -01* "L Ll
o=t<t). D

Thus we achived the following theorem.

THEOREM 1. If conditions a), b) and c) are salisfied, then problem (1) has

a unique solution which is the limil of Picard’s successive approximations (2)
and the rate of convergence for any {(1<<i<<n) is determined by the inequalities

(6), (M.
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3. Seidel’'s method of succesaive approximations

For solving problem (1) numerically, we construct Seidel’s successive appr-

oximations as follows:
50;(2,) (the intial approximations)=ai. y‘(.k)(éz.)zai. (=1, »),
(k)
dy, (1) S =
i R &) | (k) )] (k—1) (k—1)

71U NACE PR P R ®)

¥

{
: ) ® k-1 (k—1) i
f;‘ g"(t' 3, yl ¥ S0y y"_lt y" » N _Vu )ds}- ]
k=1, 2, «-

THE SUFFICIENT CONDITIONS FOR CONVERGENCE 3.1. In addition to the
set of conditions a), b) and ¢), we assume that the following condition is
satisfied:

&) L,TA+L,T) <L,

Using the condition ¢), then for £=0, 1, 2, -+, it can be proved that

yPW-a, <R, =L .

It is obvious that:
o 0
E(GEPIOIER

For tl'Sth, we have

PO —a,|<M,lt—1,], G=T, n.

p 1 ! a 0) . 1 0
Iyl( )(t)—y§ )(I)ISLlf [mamyﬁ )—yf d +L.,f maxlyf )-yf. ’]d:]ds
fp N8 ey #
! f
1 0
SLlf {m_axlyf )—yj )I "f‘L.,f mgixlyf.l)—yf.o)[dr]ds
I “dig o
2

-

t—t)
<M\ Li—57—0+L,¢—-1)],

and for 0=t=t, we get

2
¢, -0
1 2]
In this way, it can be deduced that:

92—y B | <ML . [+ - D).

@ a =" p—
POV OI<M LT N+Le-1D]. ¢ <I<T, i=T ™,
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2

1) (tn_t)
y Y~ ¥, WI= = B [1+L,,—D), (Ot<t, i=1,n).

Using mathematical induction and the condition d), we obtain
k

L= T La—1)),
<<,

foi (I——tl)

’”(t)—y Y <ML~ —

k
(k 1) l(u“

(&) A
O |<M L] —"—1+Lytt, D]

(3.7 ) —y.

I

S B )

O=<t=<t).
Therefore, the sequence of approximations {y\ ()} (0O<t<T) that difined by
equations (8), converges uniformly. Integrating the equations in system (8) and

then passing to the limit as #——oco, we deduce that Seidel’s successive approxi-
mations converge to the exact solution of problem (1).

ESTIMATING THE RATE OF CONVERGENCE 3.2. Using the set of conditions
a), b), ¢) and d), we get

Iy(l)(t) —yl(t) <L, rf {mfax|yfﬂ)_yi| "”L'zf: mfxlyﬁo)—yr-ldf}d"‘
<RL(t—t) [1+L,(t—tD], ¢, <t<T),
9@ =, I<RL ¢, ~ [L+LyGt,~D], O<I<t).
Taking into account the condition d), we have
135 @ =3, <RL Gt~ W+Lyt—1)], ¢<E<T, i=Lm),
190 W =y, (OI<RL (¢t~ [L+Lt,—D], O<t<t, i=L m.

By mathematical induction, for 1</<<s#, we obtain

k
(Ly(t—t)] .
PO -y, <R U+ L=t ) I Le—2),
t,<t<p), ©
k
[L,(t,—D] .
PO -3, I<R— 1+ L, ~D1 " U+Lye, DI,
O<t<t). (10

Hence the following theorem is proved.

THEOREM 2. If the conditions a), b), ¢) and d) are satisfied, then problem
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(1) has @ unique solution which is oblained as the limit of Seidel's successive
approximations. Furthermore, lhe rale of convergence is estimated by(9), (10).

REMARK. In the case of [L,7(1+L,T)]>=1, is can be proved that the sequence
of Seidel’s approximations [y ()], (O<(<T. 1<i<nm, k=0, 1, =) diverges.
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