• 제목/요약/키워드: substrate effect

검색결과 3,342건 처리시간 0.033초

해조류 톳 (Hizikia fusiforme)의 효소 가수분해 (Enzymatic Hydrolysis of Marine Algae Hizikia fusiforme)

  • 송부복;김성구;정귀택
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.347-351
    • /
    • 2011
  • In this study, we investigated the effect of reaction factors on enzymatic hydrolysis of Hizikia fusiforme, which is brown algae in marine biomass resource, using commercial enzymes. The composition of H. fusiforme is 38.9% of reducing sugar, 4.8% of moisture, 17.8% of ash, and 38.5% of others. In the condition of 1-5% substrate, the increase of substrate concentration enhanced the increase of reducing sugar formation; however, the hydrolysis yield did not increase after 24 h. After reaction of 75 h, conversion yield of reducing sugar were obtained to 16.45%, 17.99%, and 14.55% at 1, 2.5, and 5% substrate, respectively. As a result of effect of enzyme amount, the formation of reducing sugar did not show considerable change at 1% substrate. However, in the condition of 2.5% substrate, the great change of reducing sugar formation was observed by the increase of enzyme amount. The conversion yields of reducing sugar were obtained to 18.77% and 22.83% at 1% and 2.5% substrate with 30% enzyme, respectively. As a result of heat treatment of biomass, the high yield was obtained in 2.5% substrate and the yields were increased to 0.06-7.2% by the heat treatment. This result will provide the basic information for production process of biofuels and chemicals from marine biomass H. fusiforme.

초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향 (The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • 한국진공학회지
    • /
    • 제2권4호
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF

IBAD-MgO 기판상에 플라즈마를 이용한 LaMnO3 저온 증착 (Low temperature deposition of LaMnO3 on IBAD-MgO template assisted by plasma)

  • 김호섭;오상수;하동우;하홍수;고락길;문승현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-3
    • /
    • 2012
  • LMO($LaMnO_3$) buffer layer of superconducting coated conductor was deposited on IBAD-MgO template in the plasma atmosphere at $650^{\circ}C$ which is relatively low compared with conventional deposition temperature of more than $800^{\circ}C$. Deposition method of LMO was DC sputtering, and target and deposition chamber were connected to the cathode and anode respectively. When DC voltage was applied between target and chamber, plasma was formed on the surface of target. The tape substrate was located with the distance of 10 cm between target and tape substrate. When anode bias was connected to the tape substrate, electrons were attracted from plasma in target surface to the tape substrate, and only tape substrate was heated by electron bombardment without heating any other zone. The effect of electron bombardment on the surface of substrate was investigated by increasing bias voltage to the substrate. We found out that the sample of electron bombardment had the effect of surface heating and had good texturing at low controlling temperature.

Radiation Characteristics of a Probe-Fed Microstrip Patch Antenna on a Finite Grounded High Permittivity Substrate

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1738-1745
    • /
    • 2015
  • Radiation characteristics of a probe-fed rectangular microstrip patch antenna printed on a finite grounded high permittivity substrate are investigated systematically for various square grounded dielectric substrate sizes with several thicknesses and dielectric constants by experiment and full wave simulation. The effect of the substrate size on the radiation characteristics of a rectangular patch antenna is mainly determined by the effective dielectric constant of surface waves on a grounded dielectric substrate. As the effective dielectric constant of surface waves increases, the substrate sizes for the maximum broadside gain and the required onset for a large magnitude of squint angle decrease, while the variations of the broadside gain, the front-to-back ratio, and the magnitude of squint angle versus the substrate size increase due to the increase of the power of the surface wave.

유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향 (Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane)

  • 김태영;김군수;윤영민;김부균
    • 대한전자공학회논문지TC
    • /
    • 제48권5호
    • /
    • pp.46-53
    • /
    • 2011
  • 유한한 기판크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향을 연구하였다. 여러 가지 기판 크기에 따른 active reflection coefficient 와 average active element pattern 으로부터 선형 배열안테나의 방사특성을 예측하였다. E-평면과 만나는 기판 가장자리까지의 거리 변화가 H-평면과 만나는 기판 가장자리까지의 거리 변화에 비해 위상 배열 안테나의 방사 패턴 특성에 미치는 영향이 큰 것을 알 수 있었다.

A Study on the Reduction of Gossypol Levels by Mixed Culture Solid Substrate Fermentation of Cottonseed Meal

  • Zhang, Wenju;Xu, Zirong;Sun, Jianyi;Yang, Xia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권9호
    • /
    • pp.1314-1321
    • /
    • 2006
  • The objective of this work was to study the effect of mixed culture solid substrate fermentation of C. tropicalis ZD-3 with A. niger ZD-8 on detoxification of cottonseed meal (CSM), and to investigate the effect of fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment on the reduction of free gossypol levels during mixed culture solid substrate fermentation of CSM. Experiment 1: Three groups of disinfected CSM substrate were incubated for 48 h after inoculation with either of the fungi C. tropicalis ZD-3, A. niger ZD-8 or mixed culture (C. tropicalis ZD-3 with A. niger ZD-8). One non-inoculated group was used as the control. Levels of initial and final free gossypol (FG), CP and in vitro CP digestibility were assayed. The results indicated that mixed culture fermentation was far more effective than single strain fermentation, which not only had higher detoxification rate, but also had higher CP content and in vitro digestibility. Experiment 2: CSM substrates were treated according to experimental variables including fermentation period, proportion of CSM in substrate, sodium carbonate, minerals and heat treatment, Then, the treated CSM substrates were inoculated with mixed culture (C. tropicalis ZD-3 with A. niger ZD-8) and incubated at $30^{\circ}C$ for 36 h in a 95% relative humidity chamber. After fermentation ended, FG and CP content of fermented CSM substrate was assayed. The results showed that the appropriate fermentation period was 36 h, and the optimal proportion of CSM in substrate was 70%. Addition of sodium carbonate to CSM substrate was beneficial for fermentative detoxification. Heat treatment could facilitate fermentative detoxification, and supplementation with minerals was instrumental in reducing gossypol levels during mixed culture solid substrate fermentation of CSM.

기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향 (Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method)

  • 김현수;장호원;강종윤;김진상;윤석진;김창교
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

FCCSP용 기판의 warpage에 미치는 설계인자와 두께편차 영향에 대한 수치적 해석 (Numerical Analysis on the Design Variables and Thickness Deviation Effects on Warpage of Substrate for FCCSP)

  • 조승현;정헌일;배원철
    • 마이크로전자및패키징학회지
    • /
    • 제19권3호
    • /
    • pp.57-62
    • /
    • 2012
  • 본 논문에서는 FCCSP용 기판의 휨에 미치는 설계인자와 두께편차의 영향도를 분석하고 최적설계조건을 도출하기 위해 유한요소법에 의한 수치해석을 사용하였고 다구찌법에 의한 파라메타설계와 분산분석을 수행하였다. 해석 결과에 의하면 휨에 미치는 영향은 코어재료가 가장 크고 층별 두께(솔더레지스트, 프리프레그, 회로층)의 영향도는 낮은 것으로 분석되었다. 이때 솔더 레지스트와 프리프레그의 두께는 감소할수록 기판 휨은 감소하지만 회로층의 두께는 증가할수록 기판 휨이 감소하였다. 또한, 기판 휨에 대한 두께편차의 영향도 분석결과에 의하면 두께편차의 조합에 따라 기판휨은 최대 40%까지 증가하였다. 이것은 비록 개별 층의 두께편차가 기판품질 수준에 부합하더라도 두께편차 조합조건에 따라 기판 휨이 크게 달라질 수 있다는 것을 의미한다. 따라서, 제조공정에서 기판 휨을 줄이기 위해서 기판두께편차는 최적화되고 정밀하게 제어되어야 한다.

유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향 (Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane)

  • 김군수;김태영;김부균
    • 대한전자공학회논문지TC
    • /
    • 제47권10호
    • /
    • pp.67-73
    • /
    • 2010
  • 유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합 특성에 미치는 영향에 대하여 연구하였다. 표면파의 여러 가지 이동경로에 따른 위상차에 의한 간섭 효과를 이용하여 표면파를 서로 상쇄시켜 상호결합을 작게 할 수 있다. 유전상수가 10 이고 기판 두께가 3.2 mm 인 경우 패치안테나 중심 간의 거리가 0.5 $_0$에서 1.0 $\lambda_0$로 두 배 증가할 때, 상호 결합이 큰 기판 크기에서는 상호결합이 4.85 dB 감소하나 최적화된 기판 크기에서는 상호결합이 34.28 dB 감소한다. 최적화된 기판 크기에서 패치안테나 중심 간의 거리 증가에 따른 상호결합 감소율이 매우 큼을 볼 수 있었다. 이미지 방법으로 계산한 최적화된 기판 크기와 전산모의 결과로 얻어진 최적화된 기판 크기가 잘 일치하였다.