• Title/Summary/Keyword: subspace lattice

Search Result 41, Processing Time 0.021 seconds

POSITIVE INTERPOLATION PROBLEMS IN ALG𝓛

  • KANG, JOO HO;KIM, KI SOOK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.379-389
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.

  • PDF

SELF-ADJOINT INTERPOLATION PROBLEMS IN ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.387-395
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{i}\;=\;Y_{i}$, for i = 1,2,...,n. In this article, we showed the following: Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that range(X) is dense in H. Then the following statements are equivalent: (1) There exists an operator A in AlgL such that AX = Y, $A^{*}$ = A and every E in L reduces A. (2) sup ${\frac{$\mid$$\mid${\sum_{i=1}}^n\;E_iYf_i$\mid$$\mid$}{$\mid$$\mid${\sum_{i=1}}^n\;E_iXf_i$\mid$$\mid$}$:n{\epsilon}N,f_i{\epsilon}H\;and\;E_i{\epsilon}L}\;<\;{\infty}$ and = for all E in L and all f, g in H.

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

ISOMORPHISMS OF A(3) ∞(i,k)

  • Jo, Young-Soo;Kang, Joo-Ho;Cho, Kyu-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • The study of non-self-adjoint operator algebras on Hilbert space was only beginned by W.B. Arveson[1] in 1974. Recently, such algebras have been found to be of use in physics, in electrical engineering, and in general systems theory. Of particular interest to mathematicians are reflexive algebras with commutative lattices of invariant subspaces.

  • PDF

NORMAL INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.431-443
    • /
    • 2005
  • We investigate the equation Ax = y, where the vectors x and y are given and the operator A is normal and required to lie in CSL-algebra $AlG{\mathcal{L}}$. We desire a necessary and sufficient condition for the existence of a solution A.

  • PDF

INTERPOLATION FOR HILBERT-SCHMIDT OPERATOR AND APPLICATION TO OPERATOR CORONA THEOREM

  • Kang, Joo-Ho;Ha, Dae-Yeon;Baik, Hyoung-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.341-347
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$, for i = 1,2…, n. In this paper, we investigate Hilbert-Schmidt interpolation problems in tridiagonal algebra by connecting the classical corona theorem.

Logical Implications on Orthomodular Lattices (직교모듈라 격자에서의 논리적 함의)

  • Yon, yong-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.431-432
    • /
    • 2017
  • 고전 논리의 연산이 집합의 연산과 밀접하게 관련되어 있는 것과 같이 양자논리(quantum logic)는 힐버트 공간(Hilbert space)의 닫힌부분공간(closed subspace)의 연산과 관련되어 있다. 닫힌부분공간들의 집합은 직교모듈로 격자(orthomodular lattice)를 이루고, von Neumann과 Birkhoff를 포함하여 많은 수학자들은 양자논리의 수학적 체계를 만들기 위해 직교모듈로 격자를 이용하였다. 일반 격자(lattice)에서 논리적 함의(implication)는 $x{\rightarrow}y={\neg}x{\vee}y$에 의해 일의적으로 정의되지만 직교모듈로 격자에서는 6개의 서로 다른 논리적 함의가 정의되는 것으로 알려져 있다. 본 논문에서는 직교모듈로 격자에서 정의되는 3개의 논리적 함의를 소개하고 이들 사이의 관계를 조사한다.

  • PDF

TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 2002
  • Given vectors x and y in a Hilbert space, an intepolating operator is a bounded operator T such that Tx=y. an interpolating operator for n vectors satisfies the equation Tx$_{i}$=y, for i=1, 2,…, n. In this article, we obtained the fellowing : Let x = (x$_{i}$) and y = (y$_{i}$) be two vectors in H such that x$_{i}$$\neq$0 for all i = 1, 2,…. Then the following statements are equivalent. (1) There exists an operator A in AlgL such that Ax = y, A is a trace-class operator and every E in L reduces A. (2) (equation omitted).mitted).

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF