TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

Young Soo Jo and Joo Ho Kang

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for $i=1,2,\cdots,n$. In this article, we obtained the following: Let $x=(x_i)$ and $y=(y_i)$ be two vectors in \mathcal{H} such that $x_i\neq 0$ for all $i=1,2,\cdots$. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that Ax = y, A is a trace-class operator and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty$$

$$\operatorname{and} \sum_{n=1}^{\infty} |y_n| |x_n|^{-1} < \infty.$$

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H} . An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that Tx = y. A variation, the 'n-vector interpolation problem', asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [9]. In case \mathcal{U} is a nest algebra, the (onevector) interpolation problem was solved by Lance [10]: his result was extended by Hopenwasser [4] to the case that \mathcal{U} is a CSL-algebra.

In this article, we investigate Trace-class interpolation problems for vectors in tridiagonal algebra: Given vectors x and y in a Hilbert space,

Received August 17, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: trace-class, tridiagonal algebra, commutative subspace lattice, $\mathrm{Alg}\mathcal{L}.$

when does there exist a Trace-class operator A in a tridiagonal algebra such that Ax = y?

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in some Hilbert space. Then $\langle x,y\rangle$ means the inner product of the vectors x and y. Let N be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Trace-class interpolation for vectors in tridiagonal algebra

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots\}$. Let x_1, x_2, \cdots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n . Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} means the orthogonal complement of M. Let \mathcal{L} be the subspace lattice of orthogonal projections generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k=1,2,\cdots)$. Then the algebra $Alg\mathcal{L}$ is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [3]. These algebras have been found to be useful counterexample to a number of plausible conjectures. Recently, such algebras have been found to be use in physics, in electrical engineering and in general system theory.

Let \mathcal{A} be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg \mathcal{L} = \mathcal{A}$. Let

 $D = \{A : A \text{ is a diagonal operator in } \mathcal{B}(\mathcal{H})\}.$

Then D is a masa (maximal abelian subalgebra) of $Agl\mathcal{L}$ and $\mathcal{D}=(Alg\mathcal{L})\cap (Alg\mathcal{L})^*$, where $(Alg\mathcal{L})^* = \{A^* : A \in Alg\mathcal{L}\}$.

In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

DEFINITION. Let \mathcal{H} be a Hilbert space and let A be an operator acting on \mathcal{H} . A is called *positive* if $\langle Ax, x \rangle \geq 0$ for all x in \mathcal{H} .

DEFINITION. Let \mathcal{H} be a Hilbert space, $\{e_n\}_{n=1}^{\infty}$ an orthonormal basis. Then for any positive operator A acting on \mathcal{H} , we define $\operatorname{tr} A = \sum_{n=1}^{\infty} \langle e_n, Ae_n \rangle$. The number $\operatorname{tr} A$ is called the trace of A.

DEFINITION. Let \mathcal{H} be a Hilbert space and let A be an operator acting on \mathcal{H} . A is called a Hilbert-Schmidt operator if $\operatorname{tr} A^*A < \infty$.

DEFINITION. Let \mathcal{H} be a Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the set of all bounded operators acting on \mathcal{H} . Let $\mathcal{B}_2(\mathcal{H})$ be the set of all Hilbert-Schmidt operators acting on \mathcal{H} . Let $\mathcal{B}_1(\mathcal{H}) = \{AB | A, B \in \mathcal{B}_2(\mathcal{H})\}$. Operators belonging to $\mathcal{B}_1(\mathcal{H})$ are called *trace-class operators*.

The following theorem is well-known.

THEOREM 1. Let \mathcal{H} be a Hilbert space and let A be an operator in $\mathcal{B}(\mathcal{H})$. Then the following are equivalent.

- (1) $A \in \mathcal{B}_1(\mathcal{H})$.
- (2) $|A| = (A^*A)^{\frac{1}{2}} \in \mathcal{B}_1(\mathcal{H}).$
- (3) $|A|^{\frac{1}{2}} \in \mathcal{B}_2(\mathcal{H}).$
- (4) $tr(|A|) < \infty$.

From Theorem 1, we can get the following theorem.

THEOREM 2. Let A be a diagonal operator in $\mathcal{B}(\mathcal{H})$ with diagonal $\{a_n\}$. A is a trace-class operator if and only if $\sum_{n=1}^{\infty} |a_n| < \infty$.

THEOREM 3. Let $x = (x_i)$ and $y = (y_i)$ be two vectors in \mathcal{H} such that $x_i \neq 0$ for all $i = 1, 2, \cdots$. If

$$\sup\left\{\frac{\|\sum_{k=1}^{l}\alpha_k E_k y\|}{\|\sum_{k=1}^{l}\alpha_k E_k x\|}: l\in N, \alpha_k\in\mathbb{C} \text{ and } E_k\in\mathcal{L}\right\}<\infty$$

and

$$\sum_{n=1}^{\infty} |y_n| |x_n|^{-1} < \infty,$$

then there is an operator A in $Alg\mathcal{L}$ such that Ax = y, every E in \mathcal{L} reduces A and A is a trace-class operator.

Proof. If
$$\sup\left\{\frac{\|\sum_{k=1}^{l}\alpha_kE_ky\|}{\|\sum_{k=1}^{l}\alpha_kE_kx\|}: l\in N, \alpha_k\in\mathbb{C} \text{ and } E_k\in\mathcal{L}\right\}<\infty,$$
 then, there is an operator A in $\mathrm{Alg}\mathcal{L}$ such that $Ax=y$ and every E in \mathcal{L} reduces A by Theorem 1 [8]. Since every E in \mathcal{L} reduces A , A is diagonal. Let $A=(a_{ii})$. Since $y=Ax,\ y_i=a_{ii}x_i$ for all $i=1,2,\cdots$. Since $\sum_{n=1}^{\infty}|y_n||x_n|^{-1}<\infty$, A is a trace-class operator.

THEOREM 4. Let $x = (x_i)$ and $y = (y_i)$ be two vectors in \mathcal{H} such that $x_i \neq 0$ for all $i = 1, 2, \cdots$. If there exists an operator A in Alg \mathcal{L} such that Ax = y, every E in \mathcal{L} reduces A and A is a trace-class operator, then

$$\sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty$$

and

$$\sum_{n=1}^{\infty} |y_n| |x_n|^{-1} < \infty.$$

Proof. Since Ax = y and every E in \mathcal{L} reduces A, AEx = Ey for every E in \mathcal{L} . So $A(\sum_{k=1}^{l} \alpha_k E_k x) = \sum_{k=1}^{l} \alpha_k E_k y$ for every $l \in N$, every $\alpha_k \in \mathbb{C}$ and every $E_k \in \mathcal{L}$. Thus $\|\sum_{k=1}^{l} \alpha_k E_k y\| \le \|A\| \|\sum_{k=1}^{l} \alpha_k E_k x\|$. If $\|\sum_{k=1}^{l} \alpha_k E_k x\| \neq 0$, then

$$\frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} \le \|A\|.$$

Hence

$$\sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty.$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since $Ax=y,\ y_i=a_{ii}x_i$ and hence $a_{ii}=y_ix_i^{-1}$ for all $i=1,2,\cdots$. Since A is a trace-class operator, $\sum_{n=1}^{\infty}|y_n||x_n|^{-1}<\infty$.

If we summarize Theorems 3 and 4, then we can get the following theorem.

THEOREM 5. Let $x = (x_i)$ and $y = (y_i)$ be two vectors in \mathcal{H} such that $x_i \neq 0$ for all $i = 1, 2, \dots$. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that Ax = y, A is a trace-class operator and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty \text{ and}$$

$$\sum_{n=1}^{\infty} |y_n| |x_n|^{-1} < \infty.$$

THEOREM 6. Let $x_p = (x_{p,i})$ and $y_p = (y_{p,i})$ be vectors in \mathcal{H} such that $x_{q,i} \neq 0$ $(p = 1, 2, \dots, n)$ for some fixed q and all $i = 1, 2, \dots$. If there is an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ $(p = 1, 2, \dots, n)$, every E in \mathcal{L} reduces A and A is a trace-class operator, then

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} x_p\|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\}$$

$$< \infty \text{ and } \sum_{n=1}^{\infty} |y_{q,n}| |x_{q,n}|^{-1} < \infty.$$

Proof. Since $Ax_p = y_p$ and every E in \mathcal{L} reduces A, $AEx_p = Ey_p$. So $A(\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} x_p) = \sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} y_p, \ m_p \in N, \ l \leq n, \ E_{k,p} \in \mathcal{L} \ \text{and} \ \alpha_{k,p} \in \mathbb{C}. \ \text{Thus} \ \|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} y_p \| \leq \|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} x_p \| \neq 0, \ \text{then}$

$$\frac{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}y_p\|}{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}x_p\|} \le \|A\|.$$

Hence $\sup\left\{\frac{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}y_p\|}{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}x_p\|}: m_p\in N, l\leq n, E_{k,p}\in\mathcal{L} \text{ and } \alpha_{k,p}\in\mathbb{C}\right\}$ < ∞ . Since every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since $Ax_p=y_p,\ y_{p,i}=a_{ii}x_{p,i}\ (p=1,2,\cdots,n \text{ and } i=1,2,\cdots)$. Since $x_{q,i}\neq 0,\ a_{ii}=y_{q,i}x_{q,i}^{-1}\ (i=1,2,\cdots)$. Since A is a trace-class operator, $\sum_{n=1}^{\infty}|y_{q,n}||x_{q,n}|^{-1}<\infty$.

THEOREM 7. Let $x_p = (x_{p,i})$ and $y_p = (y_{p,i})$ be vectors in \mathcal{H} such that $x_{q,i} \neq 0$ $(p = 1, 2, \dots, n)$ for some fixed q and all $i = 1, 2, \dots$

If
$$\sup\left\{\frac{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}y_p\|}{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}x_p\|}:\ m_p\in N,\ l\leq n,\ E_{k,p}\in\mathcal{L}\ \text{and} \\ \alpha_{k,p}\in\mathbb{C}\right\}<\infty \ \text{and}\ \sum_{n=1}^{\infty}|y_{q,n}||x_{q,n}|^{-1}<\infty,\ \text{then there is an operator} \\ A\ \text{in}\ Alg\mathcal{L}\ \text{such that}\ Ax_p=y_p\ (p=1,2,\cdots,n),\ \text{every}\ E\ \text{in}\ \mathcal{L}\ \text{reduces} \\ A\ \text{and}\ A\ \text{is a trace-class operator}.$$

Proof. If
$$\sup\left\{\frac{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}y_p\|}{\|\sum_{k=1}^{m_p}\sum_{p=1}^{l}\alpha_{k,p}E_{k,p}x_p\|}: m_p\in N, l\leq n, E_{k,p}\in\mathcal{L}\right\}$$
 and $\alpha_{k,p}\in\mathbb{C}$ $<\infty$, then there is an operator A in $\mathrm{Alg}\mathcal{L}$ such that $Ax=y$ and every E in \mathcal{L} reduces A . So A is a diagonal operator. Let $A=(a_{ii})$. Since $y_p=Ax_p,\ y_{p,i}=a_{ii}x_{p,i}\ (p=1,2,\cdots,n\ \mathrm{and}\ i=1,2,\cdots)$. Since $\sum_{n=1}^{\infty}|y_{q,n}||x_{q,n}|^{-1}<\infty$, A is a trace-class operator. \square

If we summarize Theorems 6 and 7, then we can get the following theorem.

THEOREM 8. Let $x_p = (x_{p,i})$ and $y_p = (y_{p,i})$ be vectors in \mathcal{H} such that $x_{q,i} \neq 0$ for some fixed q and all $i = 1, 2, \cdots$. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ ($p = 1, \dots, n$), every E in \mathcal{L} reduces A and A is a trace-class operator.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} x_p\|} : m_p \in N, \ l \leq n, \ E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty \text{ and } \sum_{n=1}^{\infty} |y_{q,n}| |x_{q,n}|^{-1} < \infty.$$

If we modify the proof of Theorems 6 and 7, then we can get the following theorem that is considered for infinite vectors.

THEOREM 9. Let $x_p = (x_{p,i})$ and $y_p = (y_{p,i})$ be vectors in $\mathcal{H}(p = 1, 2, \cdots)$ such that $x_{q,i} \neq 0$ for all i and for some fixed q. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ ($p = 1, 2, \cdots$), every E in \mathcal{L} reduces A and A is a trace-class operator.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{k=1}^{m_p} \sum_{p=1}^{l} \alpha_{k,p} E_{k,p} x_p\|} : m_p, \ l \in \mathbb{N}, \ E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty \text{ and } \sum_{n=1}^{\infty} |y_{q,n}| \ |x_{q,n}|^{-1} < \infty.$$

References

- W. B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis 3 (1975), 208–233.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [3] F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105–120.
- [4] A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121–126.
- [5] ______, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33 (1989), no. 4, 657-672.
- [6] Y. S. Jo, Isometries of Tridiagonal Algebras, Pacific Journal of Mathematics 140 (1989), no. 1, 97-115.
- [7] Y. S. Jo and T. Y. Choi, *Isomorphisms of AlgL*_n and $AlgL_{\infty}$, Michigan Math. J. **37** (1990), 305–314.
- [8] Y. S. Jo and J. H. Kang, *Interpolation problems in CSL-Algebra AlgL*, to appear in Rocky Mountain Journal of Math.
- [9] R. Kadison, Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273–276.
- [10] E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45–68.

Young Soo Jo, Department of Mathematics, Keimyung University, Taegu 704 - 701, Korea

E-mail: ysjo@kmu.ac.kr

Joo Ho Kang, Department of Mathematics, Taegu University, Taegu 712–714, Korea

E-mail: jhkang@taegu.ac.kr