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SELF-ADJOINT INTERPOLATION ON Az =y IN ALGCL!

SUNG KON KWAK AND JOO HO KANG*

ABSTRACT. Given vectors x and y in a Hilbert space H, an interpolating
operator is a bounded operator T such that Tx = y. An interpolating op-
erator for n vectors satisfies the equations Tx; = y;, for i =1,2,--- ,n. In
this paper the following is proved : Let £ be a subspace lattice on a Hilbert
space H. Let z and y be vectors in H and let P, be the projection onto
sp(x). If PrE = EP, for each F € L, then the following are equivalent.

(1) There exists an operator A in Algl such that Az =y, Af =0 for
all fin sp(z)*+ and A = A*.

IELyll _
(2) sup |E L] cE €Ly <oo,y€sp(z)and < z,y >=< y,z >.
x
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1. Introduction

Let A be a collection of operators acting on a Hilbert space H and let x
and y be vectors on H. An interpolation question for A asks for which x and
y is there a bounded operator A € A such that Ax = y. A variation, the
‘n-vector interpolation problem’, asks for an operator A such that Axz; = vy;
for fixed finite collections {z1, 22, -, 2.} and {y1,¥y2, - ,yn}. The n-vector
interpolation problem was considered for a C*-algebra U by Kadison[6]. In
case U is a nest algebra, the (one-vector) interpolation problem was solved by
Lance[7]: his result was extended by Hopenwasser|[2] to the case that U/ is a CSL-
algebra. Munch[8] obtained conditions for interpolation in case A is required to
lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser|[3)
extended the interpolation condition to the ideal of Hilbert-Schmidt operators
in a CSL-algebra. Hopenwasser’s paper also contains a sufficient condition for
interpolation n-vectors. We obtained conditions for interpolation in the case A
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is in AlgL when £ is a CSL in [4]. Again we showed an interpolation condition
to the case that £ is a subspace lattice in [5].

We establish some notations and conventions. Let H be a Hilbert space. A
subspace lattice L is a strongly closed lattice of orthogonal projections on H. A
commutative subspace lattice L, or CSL L is a subspace lattice whose elements
commute each other. We assume that the projections 0 and [ lie in £. We
usually identify projections and their ranges, so that it makes sense to speak of
an operator as leaving a projection invariant. Let £ be a subspace lattice on a
Hilbert space H. Then AlgL denotes the algebra of bounded operators on H
that leave invariant every projection in £; AlgL is a weakly closed subalgebra
of the algebra B(H) of all bounded operators acting on H. Let x and y be
vectors in H. Then < z,y > means the inner product of vectors z and y. Let
X1,Ta, - , Ty be vectors of H. Then sp({x1,za, - ,x,}) = { a121 + asxs +
cotpy | a1, ,apn € Ch Let N be the set of all natural numbers and let C
be the set of all complex numbers. In this paper, we use the convention % =0,

when necessary.

2. Main results

Let H be a Hilbert space and £ be a subspace lattice of orthogonal projections
acting on H containing 0 and I. Let M be a subset of a Hilbert space H. Then
M means the closure of M, M= the orthogonal complement of M and [M] the
closed subspace of H generated by M.

Let  and y be vectors in H.

Lemma 2.1. Let A be an operator in AlgL such that Ax =y and Af =0 for
all f in sp(x)*. Then the following are equivalent.

(1) y € sp(x).
(2) For all f in sp(z)t, A*f is a vector in sp(z)*.

Proof. (1) = (2). Let f be a vector in sp(z)t. Then

<A'f,x>=<f,Ax >
=< f,y >=0.

Hence A* f is a vector in sp(x)=*.
(2) = (1). Let f be a vector in sp(z)*. Then

<y, f>=<Az, f>
=<z, A"f>=0.

Hence y € sp(z). O

Lemma 2.2. Let A be an operator in AlgL such that Ax =y and Af =0 for
all f in sp(x)*. If A= A*, then A*f is a vector in sp(x)* for all f € sp(x)*.
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Proof. Let f be a vector in sp(m)l- and x = A*x; + x4 for some z7 in H and z9
in range A* . Then
<A'fix> =< A*f, A%x1 + 29 >
=< A*f, A%z >+ < A" f, 20 >
=< A*f, A%z, >
=< Af, Ax; >
=0.

So A*f is a vector in sp(x)L. O

Theorem 2.3. Let L be a subspace lattice on a Hilbert space H. Let x and y
be vectors in H and let P, be the projection onto sp(x). If PE = EP, for each
FE € L, then the following are equivalent.

(1) There exists an operator A in AlgL such that Az =y, Af =0 for all f
in sp(x)*t and A = A*.

EJ_
(2) sup{”ELiH S INS L} <00, y € sp(x) and < x,y >=< vy, >.

EL
Proof. (1) = (2). If we assume that (1) holds, then sup { |EJ-y|||| :E e C} < o0
x

by Theorem 3.4 [7]. Since A = A*, y € sp(x) by Lemmas 2.1 and 2.2. And
<z,y>=<uzx,Ar >

=<z, A"z >
=<y, T >.
IEy . :
(2) = (1). If sup |ELz] : B e L} < oo, then there exists an operator A in
x

AlgL such that Az = y and Af = 0 for all f in sp(z)’ by Theorem 3.4 [7].
Since < z,y >=< y,z >, < A*'z,x >=< z, Ax >=< Az,x >. Let f be a vector
in sp(x)*. Then A*f is a vector in sp(x)® by Lemma 2.1. So < A*zw, f >=<
z,Af >=0and < Az, f >=<x,A*f >=0. Let h = ax + hy, be a vector in H,
where hy € sp(z)t. Then

<A*f,h>=<A"f,ax + hy >

=< A"f,ax >+ < A"f, h1 >

=< f,Ahy >

=0.
Hence A*f =0 for all f in sp(z)t. So A = A*. O
Lemma 2.4. Let 1,22, ,Tn,Y1,Y2, " ,Yn be vectors in H. Let A be an

operator in AlgL such that Az; = y;(i = 1,2,--- ,n) and Ag = 0 for all g in
sp(z1, -+ ,2n) L. Then the following are equivalent.
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(1) Yk € Sp(xla"' 7xn) fOT’ all k = 1,2,---,n.
(2) If f is a vector in sp(z1,- -+ ,x,)", A*f is a vector in sp(zy1,- -+ ,x,)"T.
Proof. (1) = (2). Let f be a vector in sp(z1,--+ ,x,)". Thenfork=1,2,--- n,

< A*f, x> =< f, Az >
=< f,yr >=0.

So A*f is a vector in sp(xq, - ,x,)".
(2) = (1). Let f be a vector in sp(x1,--- ,7,)". Then for all k =1,2,--- n,

0=< A"f,xp, > =< f, Axy, >

=< f7 Yk > -
Hence yi € sp(z1,- -+ ,xp) forall k =1,2,--- n. O
Lemma 2.5. Let x1,Z2, ,Tn,Y1,Y2, " ,Yn be vectors in H. Let A be an
operator in AlgL such that Az, = y;(i = 1,2,---,n), Ag = 0 for all g in
sp(x1,- - xn)t and A = A*. Then A*f is a vector in sp(x1,--- ,x,)" for all
fin sp(as, - an)

Proof. Let f beavectorin sp(z1,- -+ ,2,)" and 2y = A*zp 1+2p2(k = 1,2,--+ ,n)

for some x 1 in H and xx 2 € range A+, Then for all k = 1,2,--- ,n,
< A*f, T > =< A*f, A*(Ek’l + g2 >

=< A*f, A*.Tk?l >4+ < A'f, T2 >
< A Atz >

=< Af, Az 1 >

=0.
So A*f is a vector in sp(xy, -+ ,z,)". O
Theorem 2.6. Let L be a subspace lattice on a Hilbert space H and x1,- -+ ,Tyn, Y1,

n

-+ yp be vectors in H. Let M = Zaixi a3 € C 3 and Py be the projec-

i=1
tion onto M. If Py E = EPyy for each E € L, then the following are equivalent.
(1) There is an operator A in AlgL such that y; = Ax;(i = 1,2,--- ,n),
Ag =0 for all g in M+ and A = A*.
E+ n s
(o { LA o
B+ (2= i)
< Tp,Yqg >=<Yp,Tq > for all k,p,¢g=1,2,--- ,n.

ca; €C andE€£}<oo,yk€M and

Proof. (1) = (2). If we assume that (1) holds, then
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1B+ (20, cama)

sup = ta; € Cand E € L < oo by Theorem 3.5 [7]. Let f
{|El(2i_1 ol

be a vector in M*. Since A = A*,

<Yk, f > =< Az, f >
=<, AYf >
=<z, Af >
=<z, 0>=0for k=1,2,---,n
Soyr € Mforall k=1,2,--- ,n. And
< Xp,Yg > =< Tp, Axg >
=< xp, A%xq >
=<yp,xqg > forp,g=1,2,--- ,n.

B30 iy
(2) = (1). If sup{ | l(zifl aii)| ta; €Cand F € E} <00, then there
[E+ (i cami)|

exists an operator A in AlgL such that Ax; = y;(i =1,2,--- ,n) and Af = 0 for
all f in ML by Theorem 3.5 [7]. Since < z,,y, >=< yp, T4 >, < Tp, Axy >=<
Azp,xq > for all p,g = 1,2,---,n. So < Azp,h >=< A*z,,h > for all h
in M. Let f be a vector in M*. Then by Lemma 2.4, A*f is a vector in
ML Since < Ay, f >=< 3,, A*f >=< 2,0 >= 0 and < A*z,, f >=<
Tp, Af >=<1xp,0>=0forall f e Mll, A*x, = Az for p=1,2,--- ,n. Let
h = 2?21 a;z; + h1 be a vector in H, where hy € M=*. Then

SAf h > =< A aiwi+hy >
=1

=< f,A(Z ajx;) >+ < f,Ahy >
i=1

=< [LAQY cuwy) >
i=1

i=1
=0.
Hence A*f =0 for all f in M*. So A = A*. O

Let {x,,} and {y,} be two infinite sequences of vectors in H. With the similar
proof as Lemmas 2.4 amd 2.5, we can get the following lemmas and theorem.

Lemma 2.7. Let A be an operator in AlgL such that Ax; = y;(i =1,2,---) and
Ag =0 for all g in [x1, -+ , 2, --|=. Then the following are equivalent.
(1) yr € [x1,-+ @, for allk=1,2,---.
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(2) If f is a vector in [x1,- -+ , T, -+ |5, A*f is a vector in [Ty, ,Tp, - ]*.

Lemma 2.8. Let A be an operator in AlgC such that Az; = y;(i = 1,2,--+),
Ag =0 fO’f’ all g mn [wla"' axﬂm"']l and A = A*. Then A*f 18 a vector in
[@1, @, ]F for all fin[zy, -+ 2, -]t

Theorem 2.9. Let L be a subspace lattice on a Hilbert space H and {x,} and
{yn} be two infinite sequences of vectors in H. Let N' = {Z aizi @ a; €C,neN }
i=1

and Psz be the projection onto N. If PyE = EPj; for each E € L, then the
following are equivalent.

(1) There is an operator A in AlgL such that y; = Az;(i =1,2,---), Ag =10
for all g in N+ and A = A*.

(2) sup{ ||EL(Z:L:1 alyl)”
B+ (i o)
y €N and <,y >=<yp,xq > for all k,p,q=1,2,---.

:neN,a; €C andEGﬁ} <00,
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