
J. Appl. Math. & Informatics Vol. 29(2011), No. 3 - 4, pp. 981 - 986
Website: http://www.kcam.biz

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALGL†

SUNG KON KWAK AND JOO HO KANG∗

Abstract. Given vectors x and y in a Hilbert space H, an interpolating
operator is a bounded operator T such that Tx = y. An interpolating op-
erator for n vectors satisfies the equations Txi = yi, for i = 1, 2, · · · , n. In
this paper the following is proved : Let L be a subspace lattice on a Hilbert
space H. Let x and y be vectors in H and let Px be the projection onto
sp(x). If PxE = EPx for each E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y, Af = 0 for
all f in sp(x)⊥ and A = A∗.

(2) sup

{ ‖E⊥y‖
‖E⊥x‖ : E ∈ L

}
< ∞, y ∈ sp(x) and < x, y >=< y, x >.
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1. Introduction

Let A be a collection of operators acting on a Hilbert space H and let x
and y be vectors on H. An interpolation question for A asks for which x and
y is there a bounded operator A ∈ A such that Ax = y. A variation, the
‘n-vector interpolation problem’, asks for an operator A such that Axi = yi
for fixed finite collections {x1, x2, · · · , xn} and {y1, y2, · · · , yn}. The n-vector
interpolation problem was considered for a C∗-algebra U by Kadison[6]. In
case U is a nest algebra, the (one-vector) interpolation problem was solved by
Lance[7]: his result was extended by Hopenwasser[2] to the case that U is a CSL-
algebra. Munch[8] obtained conditions for interpolation in case A is required to
lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3]
extended the interpolation condition to the ideal of Hilbert-Schmidt operators
in a CSL-algebra. Hopenwasser’s paper also contains a sufficient condition for
interpolation n-vectors. We obtained conditions for interpolation in the case A
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is in AlgL when L is a CSL in [4]. Again we showed an interpolation condition
to the case that L is a subspace lattice in [5].

We establish some notations and conventions. Let H be a Hilbert space. A
subspace lattice L is a strongly closed lattice of orthogonal projections on H. A
commutative subspace lattice L, or CSL L is a subspace lattice whose elements
commute each other. We assume that the projections 0 and I lie in L. We
usually identify projections and their ranges, so that it makes sense to speak of
an operator as leaving a projection invariant. Let L be a subspace lattice on a
Hilbert space H. Then AlgL denotes the algebra of bounded operators on H
that leave invariant every projection in L; AlgL is a weakly closed subalgebra
of the algebra B(H) of all bounded operators acting on H. Let x and y be
vectors in H. Then < x, y > means the inner product of vectors x and y. Let
x1, x2, · · · , xn be vectors of H. Then sp({x1, x2, · · · , xn}) = { α1x1 + α2x2 +
· · ·+αnxn | α1, · · · , αn ∈ C}. Let N be the set of all natural numbers and let C
be the set of all complex numbers. In this paper, we use the convention 0

0 = 0,

when necessary.

2. Main results

Let H be a Hilbert space and L be a subspace lattice of orthogonal projections
acting on H containing 0 and I. Let M be a subset of a Hilbert space H. Then
M means the closure of M, M⊥ the orthogonal complement of M and [M] the
closed subspace of H generated by M.

Let x and y be vectors in H.

Lemma 2.1. Let A be an operator in AlgL such that Ax = y and Af = 0 for
all f in sp(x)⊥. Then the following are equivalent.

(1) y ∈ sp(x).
(2) For all f in sp(x)⊥, A∗f is a vector in sp(x)⊥.

Proof. (1) ⇒ (2). Let f be a vector in sp(x)⊥. Then

< A∗f, x > =< f,Ax >

=< f, y >= 0.

Hence A∗f is a vector in sp(x)⊥.
(2) ⇒ (1). Let f be a vector in sp(x)⊥. Then

< y, f > =< Ax, f >

=< x,A∗f >= 0.

Hence y ∈ sp(x). ¤

Lemma 2.2. Let A be an operator in AlgL such that Ax = y and Af = 0 for
all f in sp(x)⊥. If A = A∗, then A∗f is a vector in sp(x)⊥ for all f ∈ sp(x)⊥.
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Proof. Let f be a vector in sp(x)⊥ and x = A∗x1 + x2 for some x1 in H and x2

in range A∗⊥. Then

< A∗f, x > =< A∗f,A∗x1 + x2 >

=< A∗f,A∗x1 > + < A∗f, x2 >

=< A∗f,A∗x1 >

=< Af,Ax1 >

= 0.

So A∗f is a vector in sp(x)⊥. ¤

Theorem 2.3. Let L be a subspace lattice on a Hilbert space H. Let x and y
be vectors in H and let Px be the projection onto sp(x). If PxE = EPx for each
E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f
in sp(x)⊥ and A = A∗.

(2) sup

{‖E⊥y‖
‖E⊥x‖ : E ∈ L

}
< ∞, y ∈ sp(x) and < x, y >=< y, x >.

Proof. (1) ⇒ (2). If we assume that (1) holds, then sup

{‖E⊥y‖
‖E⊥x‖ : E ∈ L

}
< ∞

by Theorem 3.4 [7]. Since A = A∗, y ∈ sp(x) by Lemmas 2.1 and 2.2. And

< x, y > =< x,Ax >

=< x,A∗x >

=< y, x > .

(2) ⇒ (1). If sup

{‖E⊥y‖
‖E⊥x‖ : E ∈ L

}
< ∞, then there exists an operator A in

AlgL such that Ax = y and Af = 0 for all f in sp(x)⊥ by Theorem 3.4 [7].
Since < x, y >=< y, x >, < A∗x, x >=< x,Ax >=< Ax, x >. Let f be a vector
in sp(x)⊥. Then A∗f is a vector in sp(x)⊥ by Lemma 2.1. So < A∗x, f >=<
x,Af >= 0 and < Ax, f >=< x,A∗f >= 0. Let h = αx+ h1 be a vector in H,
where h1 ∈ sp(x)⊥. Then

< A∗f, h > =< A∗f, αx+ h1 >

=< A∗f, αx > + < A∗f, h1 >

=< f,Ah1 >

= 0.

Hence A∗f = 0 for all f in sp(x)⊥. So A = A∗. ¤

Lemma 2.4. Let x1, x2, · · · , xn, y1, y2, · · · , yn be vectors in H. Let A be an
operator in AlgL such that Axi = yi(i = 1, 2, · · · , n) and Ag = 0 for all g in
sp(x1, · · · , xn)

⊥. Then the following are equivalent.
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(1) yk ∈ sp(x1, · · · , xn) for all k = 1, 2, · · · , n.
(2) If f is a vector in sp(x1, · · · , xn)

⊥, A∗f is a vector in sp(x1, · · · , xn)
⊥.

Proof. (1) ⇒ (2). Let f be a vector in sp(x1, · · · , xn)
⊥. Then for k = 1, 2, · · · , n,

< A∗f, xk > =< f,Axk >

=< f, yk >= 0.

So A∗f is a vector in sp(x1, · · · , xn)
⊥.

(2) ⇒ (1). Let f be a vector in sp(x1, · · · , xn)
⊥. Then for all k = 1, 2, · · · , n,

0 =< A∗f, xk > =< f,Axk >

=< f, yk > .

Hence yk ∈ sp(x1, · · · , xn) for all k = 1, 2, · · · , n. ¤

Lemma 2.5. Let x1, x2, · · · , xn, y1, y2, · · · , yn be vectors in H. Let A be an
operator in AlgL such that Axi = yi(i = 1, 2, · · · , n), Ag = 0 for all g in
sp(x1, · · · , xn)

⊥ and A = A∗. Then A∗f is a vector in sp(x1, · · · , xn)
⊥ for all

f in sp(x1, · · · , xn)
⊥.

Proof. Let f be a vector in sp(x1, · · · , xn)
⊥ and xk = A∗xk,1+xk,2(k = 1, 2, · · · , n)

for some xk,1 in H and xk,2 ∈ range A∗⊥. Then for all k = 1, 2, · · · , n,
< A∗f, xk > =< A∗f,A∗xk,1 + xk,2 >

=< A∗f,A∗xk,1 > + < A∗f, xk,2 >

=< A∗f,A∗xk,1 >

=< Af,Axk,1 >

= 0.

So A∗f is a vector in sp(x1, · · · , xn)
⊥. ¤

Theorem 2.6. Let L be a subspace lattice on a Hilbert space H and x1, · · · , xn, y1,

· · · , yn be vectors in H. Let M =

{
n∑

i=1

αixi : αi ∈ C
}

and PM be the projec-

tion onto M. If PME = EPM for each E ∈ L, then the following are equivalent.
(1) There is an operator A in AlgL such that yi = Axi(i = 1, 2, · · · , n),

Ag = 0 for all g in M⊥ and A = A∗.

(2) sup

{ ‖E⊥(
∑n

i=1 αiyi)‖
‖E⊥(

∑n
i=1 αixi)‖ : αi ∈ C and E ∈ L

}
<∞, yk ∈ M and

< xp, yq >=< yp, xq > for all k, p, q = 1, 2, · · · , n.
Proof. (1) ⇒ (2). If we assume that (1) holds, then
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sup

{ ‖E⊥(
∑n

i=1 αiyi)‖
‖E⊥(

∑n
i=1 αixi)‖ : αi ∈ C and E ∈ L

}
< ∞ by Theorem 3.5 [7]. Let f

be a vector in M⊥. Since A = A∗,

< yk, f > =< Axk, f >

=< xk, A
∗f >

=< xk, Af >

=< xk, 0 >= 0 for k = 1, 2, · · · , n
So yk ∈ M for all k = 1, 2, · · · , n. And

< xp, yq > =< xp, Axq >

=< xp, A
∗xq >

=< yp, xq > for p, q = 1, 2, · · · , n.

(2) ⇒ (1). If sup

{ ‖E⊥(
∑n

i=1 αiyi)‖
‖E⊥(

∑n
i=1 αixi)‖ : αi ∈ C and E ∈ L

}
<∞, then there

exists an operator A in AlgL such that Axi = yi(i = 1, 2, · · · , n) and Af = 0 for
all f in M⊥ by Theorem 3.5 [7]. Since < xp, yq >=< yp, xq >, < xp, Axq >=<
Axp, xq > for all p, q = 1, 2, · · · , n. So < Axp, h >=< A∗xp, h > for all h
in M. Let f be a vector in M⊥. Then by Lemma 2.4, A∗f is a vector in
M⊥. Since < Axp, f >=< xp, A

∗f >=< xp, 0 >= 0 and < A∗xp, f >=<

xp, Af >=< xp, 0 >= 0 for all f ∈ M⊥⊥
, A∗xp = Axp for p = 1, 2, · · · , n. Let

h =
∑n

i=1 αixi + h1 be a vector in H, where h1 ∈ M⊥. Then

< A∗f, h > =< A∗f,
n∑

i=1

αixi + h1 >

=< f,A(
n∑

i=1

αixi) > + < f,Ah1 >

=< f,A(

n∑

i=1

αixi) >

=< f,

n∑

i=1

αiyi >

= 0.

Hence A∗f = 0 for all f in M⊥. So A = A∗. ¤

Let {xn} and {yn} be two infinite sequences of vectors in H. With the similar
proof as Lemmas 2.4 amd 2.5, we can get the following lemmas and theorem.

Lemma 2.7. Let A be an operator in AlgL such that Axi = yi(i = 1, 2, · · · ) and
Ag = 0 for all g in [x1, · · · , xn, · · · ]⊥. Then the following are equivalent.

(1) yk ∈ [x1, · · · , xn, · · · ] for all k = 1, 2, · · · .
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(2) If f is a vector in [x1, · · · , xn, · · · ]⊥, A∗f is a vector in [x1, · · · , xn, · · · ]⊥.
Lemma 2.8. Let A be an operator in AlgL such that Axi = yi(i = 1, 2, · · · ),
Ag = 0 for all g in [x1, · · · , xn, · · · ]⊥ and A = A∗. Then A∗f is a vector in
[x1, · · · , xn, · · · ]⊥ for all f in [x1, · · · , xn, · · · ]⊥.
Theorem 2.9. Let L be a subspace lattice on a Hilbert space H and {xn} and

{yn} be two infinite sequences of vectors in H. Let N =

{
n∑

i=1

αixi : αi ∈ C, n ∈ N
}

and PN be the projection onto N . If PNE = EPN for each E ∈ L, then the
following are equivalent.

(1) There is an operator A in AlgL such that yi = Axi(i = 1, 2, · · · ), Ag = 0
for all g in N⊥ and A = A∗.

(2) sup

{ ‖E⊥(
∑n

i=1 αiyi)‖
‖E⊥(

∑n
i=1 αixi)‖ : n ∈ N,αi ∈ C and E ∈ L

}
<∞,

yk ∈ N and < xp, yq >=< yp, xq > for all k, p, q = 1, 2, · · · .
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