J. Appl. Math. & Informatics Vol. **29**(2011), No. 3 - 4, pp. 981 - 986 Website: http://www.kcam.biz

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG \mathcal{L}^{\dagger}

SUNG KON KWAK AND JOO HO KANG*

ABSTRACT. Given vectors x and y in a Hilbert space \mathcal{H} , an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i = y_i$, for $i = 1, 2, \dots, n$. In this paper the following is proved : Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} and let P_x be the projection onto sp(x). If $P_x E = EP_x$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A = A^*$.

(2)
$$\sup\left\{\frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L}\right\} < \infty, \ y \in sp(x) \text{ and } \langle x, y \rangle = \langle y, x \rangle.$$

AMS Mathematics Subject Classification : 47L35. *Key words and phrases* : Interpolation Problem, Subspace Lattice, Self-Adjoint Interpolation Problem, $Alg\mathcal{L}$.

1. Introduction

Let \mathcal{A} be a collection of operators acting on a Hilbert space \mathcal{H} and let xand y be vectors on \mathcal{H} . An *interpolation question* for \mathcal{A} asks for which x and y is there a bounded operator $A \in \mathcal{A}$ such that Ax = y. A variation, the 'n-vector interpolation problem', asks for an operator A such that $Ax_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The *n*-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[6]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance[7]: his result was extended by Hopenwasser[2] to the case that \mathcal{U} is a CSLalgebra. Munch[8] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3] extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors. We obtained conditions for interpolation in the case A

 $[\]bigodot$ 2011 Korean SIGCAM and KSCAM.

is in Alg \mathcal{L} when \mathcal{L} is a CSL in [4]. Again we showed an interpolation condition to the case that \mathcal{L} is a subspace lattice in [5].

We establish some notations and conventions. Let \mathcal{H} be a Hilbert space. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections on \mathcal{H} . A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a subspace lattice whose elements commute each other. We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Then Alg \mathcal{L} denotes the algebra of bounded operators on \mathcal{H} that leave invariant every projection in \mathcal{L} ; Alg \mathcal{L} is a weakly closed subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all bounded operators acting on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Then $\langle x, y \rangle$ means the inner product of vectors x and y. Let x_1, x_2, \cdots, x_n be vectors of \mathcal{H} . Then $sp(\{x_1, x_2, \cdots, x_n\}) = \{\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n \mid \alpha_1, \cdots, \alpha_n \in \mathbb{C}\}$. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

2. Main results

Let \mathcal{H} be a Hilbert space and \mathcal{L} be a subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and I. Let \mathcal{M} be a subset of a Hilbert space \mathcal{H} . Then $\overline{\mathcal{M}}$ means the closure of \mathcal{M} , \mathcal{M}^{\perp} the orthogonal complement of \mathcal{M} and $[\mathcal{M}]$ the closed subspace of \mathcal{H} generated by \mathcal{M} .

Let x and y be vectors in \mathcal{H} .

Lemma 2.1. Let A be an operator in Alg \mathcal{L} such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$. Then the following are equivalent.

(1) $y \in sp(x)$.

(2) For all f in $sp(x)^{\perp}$, A^*f is a vector in $sp(x)^{\perp}$.

Proof. (1) \Rightarrow (2). Let f be a vector in $sp(x)^{\perp}$. Then

Hence A^*f is a vector in $sp(x)^{\perp}$.

 $(2) \Rightarrow (1)$. Let f be a vector in $sp(x)^{\perp}$. Then

$$\langle y, f \rangle = \langle Ax, f \rangle$$

= $\langle x, A^* f \rangle = 0.$

Hence $y \in sp(x)$.

Lemma 2.2. Let A be an operator in Alg \mathcal{L} such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$. If $A = A^*$, then A^*f is a vector in $sp(x)^{\perp}$ for all $f \in sp(x)^{\perp}$.

Proof. Let f be a vector in $sp(x)^{\perp}$ and $x = A^*x_1 + x_2$ for some x_1 in \mathcal{H} and x_2 in $\overline{range A^*}^{\perp}$. Then

$$< A^*f, x > = < A^*f, A^*x_1 + x_2 >$$

=< $A^*f, A^*x_1 > + < A^*f, x_2 >$
=< $A^*f, A^*x_1 >$
=< $Af, Ax_1 >$
= 0.

So A^*f is a vector in $sp(x)^{\perp}$.

Theorem 2.3. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} and let P_x be the projection onto sp(x). If $P_x E = EP_x$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A = A^*$.

$$(2) \sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty, \ y \in sp(x) \ and < x, y \ge < y, x >.$$

Proof. (1) \Rightarrow (2). If we assume that (1) holds, then $\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty$ by Theorem 3.4 [7]. Since $A = A^*$, $y \in sp(x)$ by Lemmas 2.1 and 2.2. And < x, y > = < x, Ax >

$$= \langle x, A^*x \rangle$$
$$= \langle y, x \rangle.$$

(2) \Rightarrow (1). If $\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty$, then there exists an operator A in

Alg \mathcal{L} such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$ by Theorem 3.4 [7]. Since $\langle x, y \rangle = \langle y, x \rangle$, $\langle A^*x, x \rangle = \langle x, Ax \rangle = \langle Ax, x \rangle$. Let f be a vector in $sp(x)^{\perp}$. Then A^*f is a vector in $sp(x)^{\perp}$ by Lemma 2.1. So $\langle A^*x, f \rangle = \langle x, Af \rangle = 0$ and $\langle Ax, f \rangle = \langle x, A^*f \rangle = 0$. Let $h = \alpha x + h_1$ be a vector in \mathcal{H} , where $h_1 \in sp(x)^{\perp}$. Then

$$< A^*f, h > = < A^*f, \alpha x + h_1 >$$

=< $A^*f, \alpha x > + < A^*f, h_1 >$
=< $f, Ah_1 >$
= 0.

Hence $A^*f = 0$ for all f in $sp(x)^{\perp}$. So $A = A^*$.

Lemma 2.4. Let $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$ be vectors in \mathcal{H} . Let A be an operator in $Alg\mathcal{L}$ such that $Ax_i = y_i (i = 1, 2, \dots, n)$ and Ag = 0 for all g in $sp(x_1, \dots, x_n)^{\perp}$. Then the following are equivalent.

Sung Kon Kwak and Joo Ho Kang

(1) $y_k \in sp(x_1, \dots, x_n)$ for all $k = 1, 2, \dots, n$. (2) If f is a vector in $sp(x_1, \dots, x_n)^{\perp}$, A^*f is a vector in $sp(x_1, \dots, x_n)^{\perp}$.

Proof. (1) \Rightarrow (2). Let f be a vector in $sp(x_1, \dots, x_n)^{\perp}$. Then for $k = 1, 2, \dots, n$,

$$\langle A^*f, x_k \rangle = \langle f, Ax_k \rangle$$
$$= \langle f, y_k \rangle = 0.$$

So A^*f is a vector in $sp(x_1, \cdots, x_n)^{\perp}$.

(2) \Rightarrow (1). Let f be a vector in $sp(x_1, \dots, x_n)^{\perp}$. Then for all $k = 1, 2, \dots, n$,

$$0 = < A^* f, x_k > = < f, Ax_k > = < f, y_k > .$$

Hence $y_k \in sp(x_1, \cdots, x_n)$ for all $k = 1, 2, \cdots, n$.

Lemma 2.5. Let $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$ be vectors in \mathcal{H} . Let A be an operator in $Alg\mathcal{L}$ such that $Ax_i = y_i(i = 1, 2, \dots, n)$, Ag = 0 for all g in $sp(x_1, \dots, x_n)^{\perp}$ and $A = A^*$. Then A^*f is a vector in $sp(x_1, \dots, x_n)^{\perp}$ for all f in $sp(x_1, \dots, x_n)^{\perp}$.

Proof. Let f be a vector in $sp(x_1, \dots, x_n)^{\perp}$ and $x_k = A^* x_{k,1} + x_{k,2} (k = 1, 2, \dots, n)$ for some $x_{k,1}$ in \mathcal{H} and $x_{k,2} \in \overline{range A^*}^{\perp}$. Then for all $k = 1, 2, \dots, n$,

$$< A^*f, x_k > = < A^*f, A^*x_{k,1} + x_{k,2} >$$

$$= < A^*f, A^*x_{k,1} > + < A^*f, x_{k,2} >$$

$$= < A^*f, A^*x_{k,1} >$$

$$= < Af, Ax_{k,1} >$$

$$= 0.$$

So A^*f is a vector in $sp(x_1, \cdots, x_n)^{\perp}$.

Theorem 2.6. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} . Let $\mathcal{M} = \left\{ \sum_{i=1}^n \alpha_i x_i : \alpha_i \in \mathbb{C} \right\}$ and $P_{\mathcal{M}}$ be the projection onto \mathcal{M} . If $P_{\mathcal{M}}E = EP_{\mathcal{M}}$ for each $E \in \mathcal{L}$, then the following are equivalent. (1) There is an operator A in $Alg\mathcal{L}$ such that $y_i = Ax_i(i = 1, 2, \dots, n)$, Ag = 0 for all g in \mathcal{M}^{\perp} and $A = A^*$.

(2)
$$\sup\left\{\frac{\|E^{\perp}(\sum_{i=1}^{n}\alpha_{i}y_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n}\alpha_{i}x_{i})\|}: \alpha_{i} \in \mathbb{C} \text{ and } E \in \mathcal{L}\right\} < \infty, y_{k} \in \mathcal{M} \text{ and}$$

 $< x_p, y_q > = < y_p, x_q > for all k, p, q = 1, 2, \cdots, n.$

Proof. $(1) \Rightarrow (2)$. If we assume that (1) holds, then

984

F	-	-	١.	
L			L	
L			L	

 $\sup\left\{\frac{\|E^{\perp}(\sum_{i=1}^{n}\alpha_{i}y_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n}\alpha_{i}x_{i})\|}:\alpha_{i}\in\mathbb{C}\text{ and }E\in\mathcal{L}\right\}<\infty\text{ by Theorem 3.5 [7]. Let }f$ be a vector in \mathcal{M}^{\perp} . Since $A=A^{*}$,

$$\langle y_k, f \rangle = \langle Ax_k, f \rangle$$

= $\langle x_k, A^*f \rangle$
= $\langle x_k, Af \rangle$
= $\langle x_k, 0 \rangle = 0$ for $k = 1, 2, \cdots, n$

So $y_k \in \mathcal{M}$ for all $k = 1, 2, \cdots, n$. And

$$\langle x_p, y_q \rangle = \langle x_p, Ax_q \rangle$$

$$= \langle x_p, A^*x_q \rangle$$

$$= \langle y_p, x_q \rangle \text{ for } p, q = 1, 2, \cdots, n.$$

$$(2) \Rightarrow (1). \text{ If } \sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^n \alpha_i y_i)\|}{\|E^{\perp}(\sum_{i=1}^n \alpha_i x_i)\|} : \alpha_i \in \mathbb{C} \text{ and } E \in \mathcal{L} \right\} < \infty, \text{ then there}$$

exists an operator A in Alg \mathcal{L} such that $Ax_i = y_i(i = 1, 2, \cdots, n)$ and Af = 0 for all f in \mathcal{M}^{\perp} by Theorem 3.5 [7]. Since $\langle x_p, y_q \rangle = \langle y_p, x_q \rangle, \langle x_p, Ax_q \rangle = \langle Ax_p, x_q \rangle$ for all $p, q = 1, 2, \cdots, n$. So $\langle Ax_p, h \rangle = \langle A^*x_p, h \rangle$ for all hin \mathcal{M} . Let f be a vector in \mathcal{M}^{\perp} . Then by Lemma 2.4, A^*f is a vector in \mathcal{M}^{\perp} . Since $\langle Ax_p, f \rangle = \langle x_p, A^*f \rangle = \langle x_p, 0 \rangle = 0$ and $\langle A^*x_p, f \rangle = \langle x_p, Af \rangle = \langle x_p, Af \rangle = \langle x_p, 0 \rangle = 0$ for all $f \in \mathcal{M}^{\perp^{\perp}}$, $A^*x_p = Ax_p$ for $p = 1, 2, \cdots, n$. Let $h = \sum_{i=1}^n \alpha_i x_i + h_1$ be a vector in \mathcal{H} , where $h_1 \in \mathcal{M}^{\perp}$. Then

$$< A^*f, h > = < A^*f, \sum_{i=1}^n \alpha_i x_i + h_1 >$$

= < f, A($\sum_{i=1}^n \alpha_i x_i$) > + < f, Ah₁ >
= < f, A($\sum_{i=1}^n \alpha_i x_i$) >
= < f, $\sum_{i=1}^n \alpha_i y_i >$
= 0.

Hence $A^*f = 0$ for all f in \mathcal{M}^{\perp} . So $A = A^*$.

Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . With the similar proof as Lemmas 2.4 and 2.5, we can get the following lemmas and theorem.

Lemma 2.7. Let A be an operator in Alg \mathcal{L} such that $Ax_i = y_i(i = 1, 2, \cdots)$ and Ag = 0 for all g in $[x_1, \cdots, x_n, \cdots]^{\perp}$. Then the following are equivalent. (1) $y_k \in [x_1, \cdots, x_n, \cdots]$ for all $k = 1, 2, \cdots$.

(2) If f is a vector in $[x_1, \cdots, x_n, \cdots]^{\perp}$, A^*f is a vector in $[x_1, \cdots, x_n, \cdots]^{\perp}$.

Lemma 2.8. Let A be an operator in Alg \mathcal{L} such that $Ax_i = y_i (i = 1, 2, \cdots)$, Ag = 0 for all g in $[x_1, \cdots, x_n, \cdots]^{\perp}$ and $A = A^*$. Then A^*f is a vector in $[x_1, \cdots, x_n, \cdots]^{\perp}$ for all f in $[x_1, \cdots, x_n, \cdots]^{\perp}$.

Theorem 2.9. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . Let $\mathcal{N} = \left\{\sum_{i=1}^n \alpha_i x_i : \alpha_i \in \mathbb{C}, n \in \mathbb{N}\right\}$ and $P_{\overline{\mathcal{N}}}$ be the projection onto $\overline{\mathcal{N}}$. If $P_{\overline{\mathcal{N}}}E = EP_{\overline{\mathcal{N}}}$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There is an operator A in Alg \mathcal{L} such that $y_i = Ax_i (i = 1, 2, \cdots)$, Ag = 0 for all g in \mathcal{N}^{\perp} and $A = A^*$.

$$(2) \sup\left\{\frac{\|E^{\perp}(\sum_{i=1}^{n} \alpha_{i} y_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n} \alpha_{i} x_{i})\|} : n \in N, \alpha_{i} \in \mathbb{C} \text{ and } E \in \mathcal{L}\right\} < \infty,$$

 $y_k \in \mathcal{N}$ and $\langle x_p, y_q \rangle = \langle y_p, x_q \rangle$ for all $k, p, q = 1, 2, \cdots$.

References

- Arveson, W. B. Interpolation problems in nest algebras, J. Functional Analysis, 3 (1975), 208-233
- 2. Hopenwasser, A. The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. **29** (1980), 121-126.
- Hopenwasser, A. Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4) 33(1989), 657-672.
- Jo, Y. S. and Kang, J. H. Interpolation problems in CSL-Algebra AlgL, Rocky Mountain J. of Math. 33(2003), 903-914.
- Jo, Y. S.; Kang, J. H.; Park, Dongwan Equations AX = Y and Ax = y in AlgL, J.Korean Math. Soc. 43(2006), 399-411.
- 6. Kadison, R. Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
- 7. Lance, E. C. Some properties of nest algebras, Proc. London Math. Soc., 3, 19(1969), 45-68.
- 8. Munch, N. Compact causal data interpolation, J. Math. Anal. Appl. 140(1989), 407-418.

Sung Kon Kwak received his Ph.D. at Youngnam University under the direction of J.H.Chun. He has been a professor of Daegu University since 1979. He has researched on the fields of algebra.

Department of Mathematics, Daegu University, Daegu, Korea. e-mail: sgkwak@daegu.ac.kr

Joo Ho Kang received her Ph.D. at the University of Alaba under the direction of Tavan T. Trent. She has been a professor of Daegu University since 1977. She has researched on the fields of the area (unicellularit, interpolation problem) of Operator theory.

Department of Mathematics, Daegu University, Daegu, Korea. e-mail: jhkang@daegu.ac.kr