• Title/Summary/Keyword: submicron grating

Search Result 11, Processing Time 0.023 seconds

High-Density Quantum Nanostructure for Single Mode Distributed Feedback Semiconductor Lasers by One-Step Growth (단일 공정에 의한 고효율 단일모드 반도체 레이저 구조 제작을 위한 고밀도 양자 나노구조 형성)

  • Son, Chang-Sik;Baek, Jong-Hyeob;Kim, Seong-Il;Park, Young-Ju;Kim, Yong-Tae;Choi, Hoon-Sang;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.485-490
    • /
    • 2003
  • We have developed a new way of the constant growth technique to maintain a grating height of originally-etched V-groove of submicron gratings up to 1.5 $\mu\textrm{m}$ thickness by a low pressure metalorganic chemical vapor deposition. The constant growth technique is well performed on two kinds of submicron gratings that made by holography and electron (e)-beam lithography GaAs buffer layer grown on thermally deformed submicron gratings has an important role in recovering the deformed grating profile from sinusoidal to V-shaped by reducing mass transport effects. The thermal deformation effect on submicron gratings made by e-beam lithography is less than that on submicron gratings made by holography. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystals.

Quantum Nanostructure of InGaAs on Submicron Gratings by Constant Growth Technique

  • Son, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1027-1031
    • /
    • 2001
  • A new constant growth technique to conserve an initial grating height of V-groove AlGaAs/InGaAs quantum nanostructures above 1.0 $\mu\textrm{m}$ thickness has been successfully embodied on submicron gratings using low pressure metalorganic chemical vapor deposition. A GaAs buffer prior to an AlGaAs barrier layer on submicron gratings plays an important role in overcoming mass transport effects and improving the uniformity of gratings. Transmission electron microscopy (TEM) image shows that high-density V-groove InGaAs quantum wires (QWRs) are well confined at the bottom of gratings. The photoluminescence (PL) peak of the InGaAs QWRs is observed in the temperature range from 10 to 280 K with a relatively narrow full width at half maximum less than 40 meV at room temperature PL. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystal.

  • PDF

Modified Illumination by Binary Phase Diffractive Patterns on the Backside of a Photomask (마스크 뒷면에 2 위상 회절 격자를 구현한 변형 조명 방법)

  • 이재철;오용호;고춘수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.697-700
    • /
    • 2004
  • We propose a method that realizes the modified illumination by implementing a binary phase grating at the backside of a photomask. By modeling the relationship between the shape of a grating on the photomask and the light intensity at the pupil plane, we developed a program named MIDAS that finds the optimum grating pattern with a stochastic approach. After applying the program to several examples, we found that the program finds the grating pattern for the modified illumination that we want. By applying the grating at the backside of a photomask, the light efficiency of modified illumination may be improved.

Modified Illumination with a Concentric Circular Grating at the Backside of a Photomask (마스크 뒷면에 동심원 격자를 사용한 변형조명 방법)

  • Oh, Yong-Ho;Go, Chun-Soo;Lim, Sungwoo;Lee, Jai-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.212-215
    • /
    • 2005
  • Modified illumination techniques have been used to enhance the resolution of the sub-wavelength lithography. But, since they shield the central part of incident light, the light efficiency is seriously degraded, which in turn reduces the throughput of a lithography process. In this research, we introduced an annular illumination structure that enhances the light efficiency with a concentric circular grating at the backside of a photomask. The efficiency of the structure was theoretically analyzed.

Preparation and Holographic Recording of Fluorescent Photopolymer Films Containing Anthracene Polymer for Security

  • Park, Tea-Hoon;Kim, Yoon-Jung;Kim, Jeong-Hun;Kim, Eun-Kyoung
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.305-309
    • /
    • 2010
  • Photopolymer films containing fluorescent anthracene polymer, polymethyleneanthracene (PMAn), were prepared with different concentrations of PMAn for holographic recording useful for security documents. The fluorescent photopolymer film showed enhanced fluorescent intensity due to the micro-separation which arose from grating formation and diffusion during photopolymerization. Experimental values of diffraction efficiency were well matched to the simulated values for photopolymers having different PMAn concentrations. Holography patterning was carried out using the fluorescent photopolymer under a photo-mask. A grating was confirmed using microscope techniques in the recorded area under the pattern. Importantly the recorded area showed enhanced fluorescence compared to the unrecorded part, allowing fluorescence patterns at micro scale along with the submicron grating pattern. The fluorescence pattern recorded on the photopolymer film provides additional readability of holographic reading and thus is useful for secure recording and reading of information.

Periodic patterning using a femtosecond laser (펨토초 레이저를 이용한 미세 패터닝 기술)

  • Sohn Ik-Bu;Lee Man-Seop;Woo Jung-Sik;Lee Sang-Man;Chung Jeong-Yong
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • We report experimental results on the periodic patterning using a Ti:sapphire femtosecond laser (800nm, 100fs, 1kHz). Periodic structures with reproducible basic patterns are produced both on the surface and inside transparent materials. Period patterning for the application to display panel is widely investigated. Also, the submicron dot and line patterns are fabricated inside fused silica glass, which is important for the formation of diffraction grating in integrated optical circuit. finally, we demonstrate the utility of the femtosecond laser application to optical memory by fabricating the three-dimensional dot patterns.

  • PDF

Fabrication of Grating Structures and Their Applications in Integrated Optics (집적광학용 격자구조의 제작과 응용)

  • Lee, Seong-Jae;Song, Jae-Won;Sin, Sang-Yeong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 1984
  • Submicron gratings are fabricated holographically on thin film single mode and multimode waveguides. Thin film waveguides are made by spin-coating polyurethane solution on the substrates of microscope slide glass and Corning 7059 glass. In order to characterize thin film waveguides, the refract사e index and the thickness of thin films are measured by using the m-line spectroscopy. The fabricated gratings are tested as a grating coupler, a mode converter, and a beam splitter. Also chirped gratings are fabricated to observe beam expansion phenomena and thus the possibility of the wavelength demultiplexing.

  • PDF

Optical Signal Processing of Laser Encoder Using Diffraction Grating (회절 격자를 이용한 레이저 엔코더의 광 신호처리)

  • 김수진;은재정;최평석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.145-148
    • /
    • 2000
  • Position-determining capacity is a very important condition in equipments for manufacturing semi-conductor or various instruments to measure physical displacement quantities of a moving object in submicron such as a distance of movement, direction, etc. and the accuracy of total system is influenced by detecting accuracy of these equipments. Therefore in this paper we have optically made up laser linear encoder based on optical diffraction principle to measure these displacement quantities and have processed optical signal using hardware-setup. In consequence we had acquired displacement for movement of scale using a diffraction grating by the accuracy of 0.5${\mu}{\textrm}{m}$ and had digitalized moving quantities of scale.

  • PDF

Characteristics of Polarization and Birefringence for Submicron a-Ge Thin Film on Quartz Substrate Formed by Focused-Ion-Beam (석영 기판 위에 집속 이온빔 기술에 의해 형성된 비정질 게르마늄 박막 미세 패턴의 편광 및 복굴절 특성)

  • Shin, Kyung;Ki, Jin-Woo;Park, Chung-Il;Lee, Hyun-Yong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.617-620
    • /
    • 1999
  • In this study, the polarization e(fecal and the birefringence effect of amorphous germanium (a-Ge) thin films were investigated by using linearly polarized He-Ne laser beam. The a-7e thin films were deposited on the quarts substrate by plasma enhanced chemical vapor deposition (PECVD) and thermal vacuum evaporation In order to obtain the optimum grating arrays, inorganci resists such as Si$_3$N$_4$ and a-Se$_{75}$ Ge$_{25}$ , were prepared with the optimized thickness by Monte Carlo (MC) simulation. As the results of MC simulation, the thickness ofa-Se$_{75}$ Ge$_{25}$ resist was determined with Z$_{min}$ of 360$\AA$ . The resists were exposed to Ga$^{+}$-FIB with accelerating energies of 50 keV, developed by wet etching, and a-Ge thin film was etched by reactive ion-etching (RIE). Finally, we were obtained grating arrays which grating width and linewidth are 0.8${\mu}{\textrm}{m}$, respectively and we studied the polarization and birefringence effect in transmission grating array made of high refractive amorphous material, and the applicability as waveplates and polarizers in optical device.e.e.

  • PDF

Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method (2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성)

  • Kim, Yoon-Jung;Kim, Jeong-Hun;Sim, Bo-Yeon;Lee, Myeong-Kyu;Kim, Eun-Kyoung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value ($2.5\;{\mu}m$ and $0.6\;{\mu}m$) based on the refractive index of the photopolymer and beam incident angle ($3.4^{\circ}$, $15^{\circ}$) to the photopolymer surface.