Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.8.485

High-Density Quantum Nanostructure for Single Mode Distributed Feedback Semiconductor Lasers by One-Step Growth  

Son, Chang-Sik (Department of Photonics, Silla University)
Baek, Jong-Hyeob (KOPTI)
Kim, Seong-Il (Semiconductor Materials Laboratory, KIST)
Park, Young-Ju (Semiconductor Materials Laboratory, KIST)
Kim, Yong-Tae (Semiconductor Materials Laboratory, KIST)
Choi, Hoon-Sang (Department of Materials Science and Engineering, Korea University)
Choi, In-Hoon (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.13, no.8, 2003 , pp. 485-490 More about this Journal
Abstract
We have developed a new way of the constant growth technique to maintain a grating height of originally-etched V-groove of submicron gratings up to 1.5 $\mu\textrm{m}$ thickness by a low pressure metalorganic chemical vapor deposition. The constant growth technique is well performed on two kinds of submicron gratings that made by holography and electron (e)-beam lithography GaAs buffer layer grown on thermally deformed submicron gratings has an important role in recovering the deformed grating profile from sinusoidal to V-shaped by reducing mass transport effects. The thermal deformation effect on submicron gratings made by e-beam lithography is less than that on submicron gratings made by holography. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystals.
Keywords
submicron grating; GaAs; MOCVD; holography; e-beam lithography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ T.Koui;Y.Sakata;Y.Sasaki;T.Matsumoto;K.Komatsu ] / J. Crystal Growth   DOI   ScienceOn
2 T. Sogawa, S. Ando, and H. Kanbe, Appl. Phys. Lett. 64, 472 (1994)   DOI   ScienceOn
3 T. G. Kim, E. K. Kim, S. K. Min, and J. H. Park, Appl. Phys. Lett. 69, 955 (1996)   DOI   ScienceOn
4 M. Schilling and K. Wunstel, Appl. Phys. Lett. 49, 710 (1986)   DOI
5 K. Kojima, K. Misunaga, and K. Kyuma, Appl. Phys. Lett. 56, 154 (1990)   DOI
6 T. Koui, Y. Sakata, Y. Sasaki, T. Matsumoto, and K. Komatsu, J. Crystal Growth 195, 503 (1998)   DOI   ScienceOn
7 C-S. Son, S-I. Kim, Y. Kim, Y. K. Park, E. K. Kim, S. K. Min, and I-H. Choi, J. Appl. Phys. 82, 1205 (1997)   DOI   ScienceOn
8 P. Demeester, G. Vermeire, F. Vermaerke, I. Moerman, P. Van Daele, A. Gustafsson, L. Samuelson, V. Berger, and C. Weisbuch, Low Dimensional Structures Prepared by Epitaxial Growth or Patterned Substrates, NOTO ASI series, 298, 253 (1989)
9 T. Earles, L. J. Mawst, and D. Botez, Appl. Phys. Lett. 73, 2072 (1998)   DOI   ScienceOn
10 C. Constantin, E. Martinet, A. Rudra, K. Leifer, F. Lelarge, G. Biasiol, and E. Kapon, J. Crystal Growth 207, 161 (1999)   DOI   ScienceOn
11 K. Inoguchi, H. Kudo, S. Sugahara, S. Ito, H.Yagi, and H. Takiguchi, Jpn. J. Appl. Phys. 33, 852 (1994)   DOI
12 H. Nagai, Y. Noguchi, and T. Matsuoka, J. Crystal Growth 71, 225 (1985)   DOI   ScienceOn
13 E. Colas, S. Simhony, E. Kapon, R. Bhat, D. M. Hwang, and P. S. D. Lin, Appl. Phys. Lett. 57, 914 (1990)   DOI
14 P. K. York, J. C. Connolly, N. A. Hughes, T. J. Zamerowski, J. H. Abeles, J. B. Kirk, J. T. McGinn, and K. B. Murphy, J. Crystal Growth 124, 709 (1992)   DOI   ScienceOn
15 C-S. Son, Y. K. Park, S-I. Kim, Y. Kim, E. K. Kim, S. K. Min, and I-H. Choi, Jpn. J. Appl. Phys. 37, 1701 (1998)   DOI