DOI QR코드

DOI QR Code

Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method

2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성

  • Kim, Yoon-Jung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jeong-Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Sim, Bo-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Myeong-Kyu (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Eun-Kyoung (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김윤정 (연세대학교 화공생명공학과) ;
  • 김정훈 (연세대학교 화공생명공학과) ;
  • 심보연 (연세대학교 신소재공학과) ;
  • 이명규 (연세대학교 신소재공학과) ;
  • 김은경 (연세대학교 화공생명공학과)
  • Published : 2010.02.25

Abstract

Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value ($2.5\;{\mu}m$ and $0.6\;{\mu}m$) based on the refractive index of the photopolymer and beam incident angle ($3.4^{\circ}$, $15^{\circ}$) to the photopolymer surface.

아크릴레이트계 모노머를 사용한 최적화 된 포토폴리머에 안트라센 형광폴리머를 첨가하여 형광 특성을 가지는 포토폴리머를 제조하고, 514 nm 레이저를 이용하여 2-beam coupling 방법으로 형광 포토폴리머 필름 위에 회절격자를 형성하였다. 기록 시작 후 30초 이내에 선명한 fluorescent line pattern 이 형성되었으며, 회절격자 형성 뒤, 패턴이 형성된 부분에서 형광 세기의 증가가 관찰되었다. 기록 시 간섭 빔 앞에 mask pattern 을 이용하여 $50\;{\mu}m$ gap electrode 패턴을 형성하였다. 이 때 형성된 패턴은 micron scale gap패턴 안에 회절격자로부터 생성된 submicron scale의 grating line을 보였다. 이는 beam의 광 고분자 film 표면에 대한 각도($3.6^{\circ}$, $15^{\circ}$), 패턴에 사용된 광 고분자의 굴절률 등으로부터 Bragg's equation 을 사용하여 계산된 이론적인 grating 간격 ($0.6\;{\mu}m$) 과 오차범위 안에서 일치 하였다.

Keywords

References

  1. P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, "Improving the contrast of all-printed electrochromic polymer on paper displays," J. Mater. Chem. 19, 1799-1802 (2009). https://doi.org/10.1039/b820677e
  2. S. Holdcroft, "Patterning $\pi$-conjugated polymers," Adv. Mater. 13, 1753–1765 (2001). https://doi.org/10.1002/1521-4095(200112)13:23<1753::AID-ADMA1753>3.0.CO;2-2
  3. H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated opto-electronic devices based on conjugated polymers," Science 280, 1741-1744 (1998). https://doi.org/10.1126/science.280.5370.1741
  4. J. M. You, J. S. Heo, J. Y. Lee, H. S. Kim, H. O. Kim, and E. Kim, "A fluorescent polymer for patterning of mesenchymal stem cells," Macromol. 42, 3326-3332 (2009). https://doi.org/10.1021/ma802722q
  5. Y. Kim, C. Yun, P. Jadhav, J. M. You, and E. Kim "Emissive pattern formation by the photoreaction of poly(p-phenylene vinylene)," Curr. Appl. Phys. 9, 1088-1092 (2009). https://doi.org/10.1016/j.cap.2008.12.007
  6. E. Kim and H. W. Lee, "Photo-induced electrical switching through a main chain polymer," J. Mater. Chem. 16, 1384–1389 (2006). https://doi.org/10.1039/b517175j
  7. Y. Kim and E. Kim, "Conductive polymer patterning on a photo-switching polymer layer," Macromol. Res. 14, 584-587 (2006). https://doi.org/10.1007/BF03218728
  8. S. Kirchmeyer and K. Reuter, "Scientific importance, properties and growing applications of poly(3, 4-ethylenedioxythiophene)," J. Mater. Chem. 15, 2077-2088 (2005). https://doi.org/10.1039/b417803n
  9. N. K. Guimard, N. Gomez, and C. E. Schmidt, "Conducting polymers in biomedical engineering," Prog. Polym. Sci. 32, 876-921 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.012
  10. Z. Nie and E. Kumacheva, "Patterning surfaces with functional polymers," Nat. Mater. 7, 277-290 (2008). https://doi.org/10.1038/nmat2109
  11. J. H. Kim, Y. Kim, and E. Kim, "Electrochromic pattern formation by photo cross-linking reaction of PEDOT side chains," Macromol. Res. 17, 791-796 (2009) https://doi.org/10.1007/BF03218616
  12. S. J. Woltman, J. N. Eakin, and G. P. Craword, "Holographic diffraction gratings using polymer dispersed ferroelectric liquid crystals," Opt. Lett. 31, 3273-3275 (1963). https://doi.org/10.1364/OL.31.003273
  13. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, "High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides," Chem. Mater. 7, 6263-6271 (2005).
  14. N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 22-25 (2002). https://doi.org/10.1063/1.1490636
  15. E. Kim, "Polymeric materials for holographic recording," J. Korean Society for Imaging Science 11, 65-78 (2005).
  16. A. Pu and D. Psaltis, "High-density recording in photopolymerbased holographic three-dimensional disks," Appl. Opt. 35, 2389-2398 (1996). https://doi.org/10.1364/AO.35.002389
  17. H. J. Oh, J. H. Kim, K. Rameshbabu, J. K. Do, and E. Kim "Fluorescent grating patterns of photopolymer film containing ethylene glycol phenyl ether acrylate," J. Nanosci. Nanotechnol. 8, 4616-4620 (2008). https://doi.org/10.1166/jnn.2008.IC36
  18. H. J. Lee, B. D. Sarwade, J. Park, and E. Kim, "Synthesis of new photopolymeric methacrylate thioester with s-triazine ring for holographic recording," Opt. Mater. 30, 637-644 (2007). https://doi.org/10.1016/j.optmat.2007.02.046
  19. K. Rameshbabu, Y. Kim, T. Kwon, J. Yoo, and E. Kim, "Facile one-pot synthesis of a photo patternable anthracene polymer," Tetrahedron Lett. 48, 4755-4760 (2007). https://doi.org/10.1016/j.tetlet.2007.05.002
  20. J. H. Kim, B. Sarwade, K. Rameshbabu, E. Kim, and S. Lee, "Photopolymers containing epoxy monomers for holographic recording," Proc. SPIE, Materials and Applications 6488, 648806/1-648806/8 (2007).
  21. E. Kim, J. Park, C. Shin, and N. Kim, "Effect of organic side-chains on the diffraction efficiency of an organicinorganic hybrid nano-composite film," Nanotechnol. 17, 2899-2906 (2006). https://doi.org/10.1088/0957-4484/17/12/013
  22. G. G. Guilbault, Practical Fluorescence: Theory, Methods, and Techniques; M. Dekker (New York, USA, (1973), pp.1-40.
  23. E. Lo'pez Cabarcos and S. A. Carter, "Effect of the molecular weight and the ionic strength on the photoluminescence quenching of water-soluble conjugated polymer sodium poly[2-(3-thienyl)ethyloxy-4-butylsulfonate]," Macromol , 38, 10537-10541 (2005). https://doi.org/10.1021/ma0512206
  24. H. J. Oh, J. H. Kim, and E. Kim, "Holographic recording on photopolymers containing pyrene for enhanced fluorescence intensity," Macromol. 41, 7160-7165 (2008). https://doi.org/10.1021/ma800691y