• Title/Summary/Keyword: sub-100 nm

Search Result 454, Processing Time 0.032 seconds

Studies on reactive ion etching of GaN using BCl$_{3}$ (BCl$_{3}$를 이용한 GaN계 질화합물 반도체의 RIE에 관한연구)

  • 윤관기;최용석;이일형;유순재;이진구;김송강
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.409-412
    • /
    • 1998
  • BCl/sub 3/ 및 Cl/sub 2/ 반응가스를 사용하여 RIE 장치로 GaN의 건식식각을 연구하였다. RF 전력, 반응가스의 유량 및 반응가스의 혼합비 등의 변화에 따른 최적의 식각공정 조건 및 결합특성을 연구하였다. RF 전력에 따른 GaN의 식각율은 챔버압력 25mTorr, BCl/sub 3/ 유량 40 sccm의 조건에서 RF 전력이 100W일때 17nm/min을 얻었다. BCl/sub 3/의 유량에 따른 식각율은 RF 전력 100W 챔버압력 20mTorr, Cl/sub 2/ 유량 5sccm의 조건에서 BCl/sub 3/ 유량이 40 sccm일때 65nm/min을 얻었다. Cl/sub 2//BCl/sub 3/ 혼합가스 비율에 따른 식각율은 Cl/sub 2/ 유량을 5sccm으로 고정하고 BCl/sub 3/ 유량을 변화시켰을때 RF 전력 100W 및 챔버압력 20mTorr의 조건에서 혼합비가 0.25일때 50nm/min을 얻었다. RF 전력에 따른 PR의 식각율은 챔버압력 25mTorr, Cl/sub 2/ 유량 0 sccm 및 BCl/sub 3/ 유량 40 sccm의 조건에서 RF 전려이 100W일때 15nm/min을 얻었다. 또한, 챔버압력 20mTorr, Cl/sub 2/ 유량 5 sccm 및 BCl/sub 3/ 유량 20sccm의 조건에서 RF 전력이 100W 일때 82nm/min을 얻었다.

  • PDF

Novel Devices for Sub-100 nm CMOS Technology

  • Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.180-183
    • /
    • 2000
  • Beginning with a brief introduction on near 100 nm or below CMOS devices, this paper addresses novel devices for future sub-100 nm CMOS. First, key issues such as gate materials, gate dielectric, source/drain, and channel in Si bulk CMOS devices are considered. CMOS devices with different channel doping and structure are introduced by explaining a figure of merit. Finally, novel device structures such as SOI, SiGe, and double-gate devices will be discussed for possible candidates for sub-100 nm CMOS.

  • PDF

1/f Noise Characteristics of Sub-100 nm MOS Transistors

  • Lee, Jeong-Hyun;Kim, Sang-Yun;Cho, Il-Hyun;Hwang, Sung-Bo;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • We report 1/f noise PSD(Power Spectrum Density) of sub-100 nm MOSFETs as a function of various parameters such as HCS (Hot Carrier Stress), bias condition, temperature, device size and types of MOSFETs. The noise spectra of sub-100 nm devices showed Lorentzian-like noise spectra. We could check roughly the position of a dominant noise source by changing $V_{DS}$. With increasing measurement temperature, the 1/f noise PSD of 50 nm PMOS device decreases, but there is no decrease in the noise of NMOS device. RTN (Random Telegraph Noise) was measured from the device that shows clearly a Lorentzian-like noise spectrum in 1/f noise spectrum.

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

Preparation and Properties of Eu3+ Doped Y2O3 Nanoparticles with a Solvothermal Synthesis Using the Ethylene Glycol (에틸렌 글리콜을 이용하여 용매열 합성으로 Eu3+가 도핑된 Y2O3 나노 입자의 제조 및 특성)

  • 신수철;조태환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.709-714
    • /
    • 2003
  • Eu doped $Y_2$ $O_3$ nanoparticles were prepared with the solvothermal synthesis using the ethyleneglycol solvent at 20$0^{\circ}C$ for 3-5 h and then annealed in air at 1000-140$0^{\circ}C$ for 2-4 h. The X-ray diffraction pattern of annealed crystals at 100$0^{\circ}C$ for 2 h could be indexed as pure cubic cell of $Y_2$ $O_3$ phase with lattice parameters a=10.5856 $\AA$ which is very close to the reported data (JCPDS Card File, 41-1105 a=10.6041 $\AA$). Average size of prepared phosphor particles have about 100 nm, which were spherical morphology. The phosphor particle sizes decreased and the emission intensity increased at the annealing temperature. Though PL spectrum analysis, the 3% Eu doped $Y_{2-x}$ $O_3$:E $u_{x}$ $^{3+}$(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum at 611 nm wavelength.

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

The Modification of Magnetic Properties of Co73Pt27-TiO2 Perpendicular Magnetic Recording Media with Ga+ Ion Irradiation (Ga+ 이온 조사를 통한 Co73Pt27-TiO2 수직자기 기록매체의 자기적 특성 변화)

  • Kim, Sung-Dong;Park, Jin-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.221-225
    • /
    • 2007
  • The effects of $Ga^+$ ion irradiation on the magnetic properties of the $Co_{73}Pt_{27}-TiO_2$ perpendicular magnetic recording media were investigated. As $Ga^+$ ion dose increased from $1\times10^{15}ions/cm^2\;to\;30\times10^{15}ions/cm^2$, the perpendicular magnetic anisotropy was degraded and no longer observed above $20\times10^{15}ions/cm^2$ dose. The deterioration of the perpendicular magnetic anisotropy and ferromagnetic properties can be attributed to the concentration profile change due to Ga+ ion implantation. The magnetic islands of $70\times70nm^2\;and\;100\times100nm^2$ size were successfully fabricated with $Ga^+$ ion irradiation.

Crystal growth of nanosized α-Fe2O3 particles in frit (Frit에서의 나노사이즈 α-Fe2O3 입자의 결정 성장)

  • Hiroaki-Katsuki, Hiroaki-Katsuki;Choi, Eun-Kyoung;Lee, Won-Jun;Moon, Won-Jin;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.69-73
    • /
    • 2018
  • Crystal growth of ${\alpha}-Fe_2O_3$ nanosized particles of 80~90 nm in size, which were hydrothermally prepared from 0.03 M $FeCl_3$ solution at $100^{\circ}C$, was investigated in Pb-containing and Pb-free frit. By heating ${\alpha}-Fe_2O_3$ nanosized particles in two frits at $800^{\circ}C$, the average diameter of particles in frits was increased to 200~210 nm and 150~160 nm, respectively, and the crystal growth due to the aggregation and sintering of several ${\alpha}-Fe_2O_3$ particles was observed. Formation ratios of larger particles over 100 nm in diameter were 54 % in Pb-free frit and 85 % in Pb-containing frit. After heating ${\alpha}-Fe_2O_3$ particles in frits at $800^{\circ}C$, 7~9 nm in average diameter of pores were formed in particles. Theses pores were derived from the porous structure of original ${\alpha}-Fe_2O_3$ particles and confined in particles during sintering.

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent (Mg를 환원제로 사용하여 열증발법으로 합성한 SnO2 나노결정 및 발광 특성)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.338-342
    • /
    • 2020
  • Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.

Thickness Optimization of SiO2/Al2O3 Stacked Layer for High Performance pH Sensor Based on Electrolyte-insulator-semiconductor Structure (SiO2/Al2O3 적층 감지막의 두께 최적화를 통한 고성능 Electrolyte-insulator-semiconductor pH 센서의 제작)

  • Gu, Ja-Gyeong;Jang, Hyun-June;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • In this study, the thickness effects of $Al_2O_3$ layer on the sensing properties of $SiO_2/Al_2O_3$ (OA) stacked membrane were investigated using electrolyte-insulator-semiconductor (EIS) structure for high quality pH sensor. The $Al_2O_3$ layers with a respective thickness of 5 nm, 15 nm, 23 nm, 50 nm, and 100 nm were deposited on the 5-nm-thick $SiO_2$ layers. The electrical characteristics and sensing properties of each OA membranes were investigated using metal-insulator-semiconductor (MIS) and EIS devices, respectively. As a result, the OA stacked membrane with 23-nm-thick $Al_2O_3$ layer shows the excellent characteristics as a sensing membrane of EIS sensor, which can enhance the signal to noise ratio.