• 제목/요약/키워드: strong law of large numbers

검색결과 78건 처리시간 0.022초

A UNIFORM STRONG LAW OF LARGE NUMBERS FOR PARTIAL SUM PROCESSES OF FUZZY RANDOM SETS

  • Kwon, Joong-Sung;Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.647-653
    • /
    • 2012
  • In this paper, we consider fuzzy random sets as (measurable) mappings from a probability space into the set of fuzzy sets and prove a uniform strong law of large numbers for sequences of independent and identically distributed fuzzy random sets. Our results generalize those of Bass and Pyke(1984)and Jang and Kwon(1998).

SOME NOTES ON STRONG LAW OF LARGE NUMBERS FOR BANACH SPACE VALUED FUZZY RANDOM VARIABLES

  • Kim, Joo-Mok;Kim, Yun Kyong
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.383-399
    • /
    • 2013
  • In this paper, we establish two types of strong law of large numbers for fuzzy random variables taking values on the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable Banach space. The first result is SLLN for strong-compactly uniformly integrable fuzzy random variables, and the other is the case of that the averages of its expectations converges.

On the Strong Law of Large Numbers for Arbitrary Random Variables

  • 남은우
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.49-54
    • /
    • 2002
  • For arbitrary random variables {$X_{n},n{\geq}1$}, the order of growth of the series. $S_{n}\;=\;{\sum}_{j=1}^n\;X_{j}$ is studied in this paper. More specifically, when the series S_{n}$ diverges almost surely, the strong law of large numbers $S_{n}/g_{n}^{-1}$($A_{n}{\psi}(A_{n}))\;{\rightarrow}\;0$ a.s. is constructed by extending the results of Petrov (1973). On the other hand, if the series $S_{n}$ converges almost surely to a random variable S, then the tail series $T_{n}\;=\;S\;-\;S_{n-1}\;=\;{\sum}_{j=n}^{\infty}\;X_{j}$ is a well-defined sequence of random variables and converges to 0 almost surely. For the almost surely convergent series $S_{n}$, a tail series strong law of large numbers $T_{n}/g_{n}^{-1}(B_{n}{\psi}^{\ast}(B_{n}^{-1}))\;{\rightarrow}\;0$ a.s., which generalizes the result of Klesov (1984), is also established by investigating the duality between the limiting behavior of partial sums and that of tail series. In particular, an example is provided showing that the current work can prevail despite the fact that previous tail series strong law of large numbers does not work.

  • PDF

A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION

  • Ko, Mi-Hwa
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.91-99
    • /
    • 2010
  • In this paper we introduce the concept of asymptotically almost negatively associated random variables in a Hilbert space and obtain the strong law of large numbers for a strictly stationary asymptotically almost negatively associated sequence of H-valued random variables with zero means and finite second moments. As an application we prove a strong law of large numbers for a linear process generated by asymptotically almost negatively random variables in a Hilbert space with this result.

ON STRONG LAWS OF LARGE NUMBERS FOR 2-DIMENSIONAL POSITIVELY DEPENDENT RANDOM VARIABLES

  • Kim, Tae-Sung;Beak, Hoh-Yoo;Seo, Hye-Young
    • 대한수학회보
    • /
    • 제35권4호
    • /
    • pp.709-718
    • /
    • 1998
  • In this paper we obtain strong laws of large numbers for 2-dimensional arrays of random variables which are either pairwise positive quadrant dependent or associated. Our results imply extensions of Etemadi`s strong laws of large numbers for nonnegative random variables to the 2-dimensional case.

  • PDF