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HÀJECK-RÈNYI TYPE INEQUALITY AND STRONG
LAW OF LARGE NUMBERS FOR AQSI RANDOM

VARIABLES

Dae-Hee Ryu*

Abstract. In this paper we study the Hàjeck-Rènyi type inequal-
ity and strong law of large numbers for asymptotically quadrant
sub-independent(AQSI) sequences. We also prove the integrability
of supremum for AQSI sequences.

1. Introduction

Hàjeck-Rènyi(1955) proved the following important inequality: Let
{Xn, n ≥ 1} be a sequence of centered independent random variables
with finite variances and {bn, n ≥ 1} a sequence of nondecreasing posi-
tive numbers. Then, for any ε > 0 and any positive integer m < n, we
obtain

P ( max
m≤k≤n

|∑k
i=1 Xi|
bk

≥ ε) ≤ ε−2(
n∑

k=m+1

EX2
k

b2
k

+
m∑

k=1

EX2
k

b2
m

).

Since then, the extensions of this type inequality for the dependent se-
quences defined below have be been studied by many authors. For ex-
ample, Liu, Gan and Chen(1999) proved the Hàjeck-Rènyi inequality
and the strong law of large numbers for negatively associated random
variables, Fazekas and Klesov(2000) considered a general method for ob-
taining a Hàjeck-Rènyi type inequality and a strong law of large numbers
and gave applications for some dependent sequences and Ko et al.(2005)
proved the Hàjeck-Rènyi inequality and strong law of large numbers
for AANA random variables. In associated sequence case, Prakasa
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Rao(2002) proved the Hàjeck-Rènyi type inequality for associated ran-
dom variables and Sung(2008) improved the Hàjeck-Rènyi inequality of
Prakasa Rao(2002). Shuhe et al.(2009) investigated the Hàjeck-Rènyi
type inequality by using different methods from Sung’s and improved
the results of Sung(2008) and proved a strong law of large numbers for
associated sequences by this type inequality.

Next, we turn to our attention to the dependence for random vari-
ables. Lehmann(1966) introduced a simple and natural definition of
bivariate dependence: A sequence {Xn, n ≥ 1} of random variables is
said to be pairwise positively quadrant dependent(pairwise PQD)[resp.
pairwise negatively quadrant dependent(pairwise NQD)] if for any ri, rj

and i 6= j, P (Xi > ri, Xj > rj)− P (Xi > ri)P (Xj > rj) ≥ 0[resp. ≤ 0].
This definition subsequently extended to the multivariate case. Esary,
Proschan and Walkup(1967) extended: A finite family {X1, · · · , Xn} of
random variables is said to be associated if Cov(f(X1, · · · , Xn)), g(X1,
· · · , Xn)) ≥ 0, for any real coordinatewise nondecreasing functions f
and g on Rn such that this covariance exists. An infinite family is as-
sociated if every subfamily is associated. A finite family {X1, · · · , Xn}
of random variables is said to be negatively associated(NA) if for any
disjoint subsets A, B ⊂ {1, 2, ·, n} and any nondecreasing functions f
on RA and g on RB, Cov(f(Xi, i ∈ A), g(Xj , j ∈ B)) ≤ 0 where this
covariance exists. An infinite family is NA if every subfamily is NA(see
Joag-Dev and Proschan(1983)).

Chandra and Gohsal(1996) also introduced the following dependence
notion which allows both positive and negative correlations. A se-
quence {Xn, n ≥ 1} of random variables is called asymptotically almost
negatively associated(AANA) if there exists a nonnegative sequence
q(m) → 0 such that

Cov(f(Xm), g(Xm+1, · · · , Xm+k))

≤ q(m)(V ar(f(Xm)), V ar(g(Xm+1 · · · , Xm+k)))
1
2

for all n, k ≥ 1 and all cordinatewise nondecreasing functions f and g
whenever the right-hand side is finite.

It is interesting to unify as well as weaken the concept of depen-
dence. Chandra and Ghosal(1996) introduced the dependence which
unifies, to some extent, the notion of mixing-type sequences and that of
negatively dependent sequences as follows: A sequence {Xn, n ≥ 1} of
dependent random variables is said to be asymptotically quadrant sub-
independent(AQSI) if there exists a nonnegative sequence {q(m)} such
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that for all i 6= j,
(1.1)
P (Xi > s, Xj > t)− P (Xi > s)P (Xj > t) ≤ q(|i− j|)αij(s, t), s, t > 0,

(1.2)
P (Xi < s,Xj < t)− P (Xi < s)P (Xj < t) ≤ q(|i− j|)βij(s, t), s, t < 0,

where q(m) → 0 and αij(s, t) ≥ 0, βij(s, t) ≥ 0.
Note that pairwise negative quadrant dependent and pairwise m-

dependent random variables are a special cases of AQSI random vari-
ables(see Birkel(1992)).

In this paper we consider some notions of AQSI random variables
and investigate Hàjeck-Rènyi type inequality, strong law of large number
and integrability of supremum for AQSI random variables which have
not been established previously in the literature.

2. Preliminaries

The following lemma is an extension of the well-known Rademacher-
Mensov inequality.

Lemma 2.1 (Chandra, Ghosal(1996)). Let {Xn, n ≥ 1} be a sequence
of square-integrable dependent random variables with EXn = 0, n ≥ 1.
Assume that there exists a sequence {a2

n, n ≥ 1} of real numbers such
that

(2.1) E(
m+p∑

i=m+1

Xi)2 ≤
m+p∑

i=m+1

a2
i

for all m, p ≥ 1 and m + p ≤ n. Then, we have

(2.2) E( max
1≤k≤n

(
k∑

i=1

Xi)2) ≤ ((log n/ log 3) + 2)2
n∑

i=1

a2
i .

Proof. The proof is found in Theorem 10 of Chandra and Ghosal(1993)

From Lemma 2.1 we obtain the following Hàjeck-Rènyi type inequal-
ity for square-integrable dependent random variables with mean zeros.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of square-integrable
dependent random variables with mean zeros and let {bn, n ≥ 1} be a
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sequence of nondecreasing positive numbers. Assume that there exist
a2

1, · · · , a2
n satisfying

(2.3) E(
m+p∑

i=m+1

Xi

bi
)2 ≤

m+p∑

i=m+1

a2
i

b2
i

for all m, p ≥ 1, m + p ≤ n. Then, for any ε > 0

(2.4) E( max
1≤k≤n

(
k∑

i=1

Xi

bi
)2) ≤ ((log n/ log 3) + 2)2

n∑

i=1

a2
i

b2
i

,

where Sn = X1 + · · ·+ Xn.

Lemma 2.3. Let X and Y be random variables with finite second
moments. Then, for any real numbers x and y
(2.5)

Cov(X, Y ) =
∫ ∞

−∞
{P (X > x, Y > y)− P (X > x)P (Y > y)}dxdy.

Proof. See the proof of Lemma 2 in Lehmann(1966).

Lemma 2.4. Let {bn, n ≥ 1} be a sequence of nondecreasing positive
numbers. Let {Xn, n ≥ 1} be a sequence of centered square-integrable
AQSI random variables with

∑∞
m=1 q(m) < ∞. If for all i < j

(2.6)
∫ ∞

0

∫ ∞

0
αij(x, y)dxdy ≤ D(

1
b2
i

+
EX2

i

b2
i

+
EX2

j

b2
j

)

and

(2.7)
∫ ∞

0

∫ ∞

0
βij(x, y)dxdy ≤ D(

1
b2
i

+
EX2

i

b2
i

+
EX2

j

b2
j

),

then,

(2.8) E(
n∑

i=1

Xi

bi
)2 ≤ C

n∑

i=1

(
1 + EX2

i

b2
i

).

Proof. Since {Xn/bn} is a sequence of square-integrable AQSI ran-
dom variables {X+

n /bn} and {X−
n /bn} are also square-integrable AQSI

sequences, where X+
n means max{Xn, 0} and X−

n means min{Xn, 0}.
Now by (1.1), (1.2), (2.5), (2.6) and (2.7) we have for i < j

Cov(
X+

i

bi
,
X+

j

bj
) ≤ Dq(|i− j|)( 1

b2
i

+
EX2

i

b2
i

+
EX2

j

b2
j

).
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Hence,

V ar(
n∑

i=1

X+
i

bi
) ≤ C

n∑

i=1

(
1 + EX2

i

b2
i

) for all n

since
∑∞

m=1 q(m) < ∞ and EX2
i < ∞ for all i ≥ 1.

Similarly, by (1.1), (1.2), (2.5), (2.6) and (2.7)

V ar(
n∑

i=1

X−
i

bi
) ≤ C

n∑

i=1

(
1 + EX2

i

b2
i

) for all n.

Thus

E(
n∑

i=1

Xi

bi
)2 = V ar(

n∑

i=1

Xi

bi
)

≤ 2V ar(
n∑

i=1

X+
i

bi
) + 2V ar(

n∑

i=1

X−
i

bi
)

≤ C
n∑

i=1

(
1 + EX2

i

b2
i

) for all n.

3. The Hàjeck-Rènyi inequality for AQSI sequence

From Lemmas 2.2 and 2.4 we get the Hàjeck-Rènyi type inequality
for AQSI random variables.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of centered square in-
tegrable AQSI random variables with and

∑∞
m=1 q(m) < ∞ and {bn, n ≥

1} a sequence of nondecreasing positive numbers. Assume that for all
i < j (2.6) and (2.7) hold, then, for any ε > 0

(3.1) P ( max
1≤k≤n

|Sk|
bk

≥ ε) ≤ C((log n/ log 3) + 2)2
n∑

k=1

1 + EX2
k

b2
k

.

Proof. In (2.8) of Lemma 2.4 put a2
i = 1 + EX2

i . Then by Lemma
2.2 we have

(3.2) E( max
1≤k≤n

(
k∑

i=1

Xi

bi
)2) ≤ C((log n/ log 3) + 2)2

n∑

i=1

1 + EX2
i

b2
i

.
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Next, it is obvious that

{ max
1≤k≤n

|Sk

bk
| ≥ ε} ⊆ { max

1≤k≤n
max
1≤i≤k

|
∑

i≤j≤k

Xj

bj
| ≥ ε}

= { max
1≤i≤k≤n

|
∑

j≤k

Xj

bj
−

∑

j<i

Xj

bj
| ≥ ε}

⊆ {max
1≤i≤n

|
i∑

j=1

Xj

bj
| ≥ ε

2
},

which yields

(3.3) P ( max
1≤k≤n

|Sk|
bk

≥ ε) ≤ P ( max
1≤k≤n

|
k∑

j=1

Xj

bj
| ≥ ε

2
)

≤ P{ max
1≤k≤n

(
k∑

j=1

Xj

bj
) ≥ ε

2
}+ P{ max

1≤k≤n
(−

k∑

j=1

Xj

bj
) ≥ ε

2
}.

(See the proof of Theorem 2.1 in Liu et al.(1999), for more details.)
Hence (3.2), (3.3) and Markov’s inequality the result (3.1) follows.

From Theorem 3.1 we can get the following more generalized Hàjeck-
Rènyi inequality.

Theorem 3.2. Under conditions of Theorem 3.1, for any ε > 0 and
any positive integer m < n we have

(3.4) P ( max
m≤k≤n

|Sk|
bk

≥ ε) ≤ C{((log m/ log 3) + 2)2(
m∑

k=1

1 + EX2
k

b2
m

)

+((log n/ log 3) + 2)2(
n∑

k=m+1

1 + EX2
k

b2
k

)}.

Example 3.3. Let {bn, n ≥ 1} be a sequence of nondecreasing pos-
itive numbers and let {Xn, n ≥ 1} be a sequence of square integrable
pairwise NQD random variables with mean zeros. Then, for any ε > 0
and for any positive integer m < n,

P ( max
m≤k≤n

| 1
bk

Sk| ≥ ε) ≤ C{((log m/ log 3) + 2)2
m∑

k=1

EX2
k

b2
m

+((log n/ log 3) + 2)2
n∑

k=m+1

EX2
k

b2
k

}.
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4. Strong law of large numbers and integrability of supre-
mum for AQSI sequence

Theorem 4.1. Let {bn, n ≥ 1} be a sequence of nondecreasing un-
bounded positive numbers. Let {Xn, n ≥ 1} be a sequence of centered
square-integrable AQSI random variables with

∑∞
m=1 q(m) < ∞. Sup-

pose that (2.6), (2.7) and

(4.1) lim
n→∞

n∑

k=1

(1 + EX2
k)(log n)2

b2
k

< ∞

hold. Then

(4.2)
Sn

bn
→ 0 a.s. as n →∞.

Proof. By Theorem 3.2 we have

(4.3) P ( max
m≤k≤n

|Sk|
bk

≥ ε) ≤ C(((log m/ log 3) + 2)2(
m∑

k=1

1 + EX2
k

b2
m

)

+((log n/ log 3) + 2)2(
n∑

k=m+1

1 + EX2
k

b2
k

)).

But

(4.4) P (sup
k≥m

| 1
bk

k∑

i=1

Xi| ≥ ε)

= lim
m→∞P ( max

m≤k≤n
| 1
bk

k∑

i=1

Xi| ≥ ε)

≤ C lim
m→∞{((log m/ log 3) + 2)2

m∑

k=1

1 + EX2
k

b2
m

+((log n/ log 3) + 2)2
n∑

k=m+1

1 + EX2
k

b2
k

}.

By the Kronecker lemma and (4.1) we get

(4.5)
m∑

k=1

((log m/ log 3) + 2)2
1 + EX2

k

b2
m

→ 0 as m →∞.
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Hence, by combining (4.1), (4.4) and (4.5) we obtain

lim
n→∞P (sup

k≥n

1
bk
|

k∑

i=1

Xi| ≥ ε) = 0.

So the proof is complete.

Corollary 4.2. Let {bn, n ≥ 1} be a sequence of nondecreasing
unbounded numbers such that

lim
n→∞

n∑

k=1

(log n)2

b2
k

< ∞

and {Xn, n ≥ 1} be a sequence of centered AQSI random variables with
supk≥1 EX2

k < ∞ and
∑∞

m=1 q(m) < ∞. Then, (2.6) and (2.7) imply
(4.2).

Next we consider the integrability of supremum for AQSI random
variables.

Theorem 4.3. Let {bn, n ≥ 1} be a sequence of nondecreasing pos-
itive numbers. Let {Xn, n ≥ 1} be a sequence of centered square-
integrable AQSI random variables with

∑∞
m=1 q(m) < ∞ and satisfying

(2.6) and (2.7).
Suppose that (4.1) holds. Then, for 0 < r < 2 we have

(4.6) E sup
n

(
|Sn|
bn

)r < ∞.

Proof.

E sup
n

(
|Sn|
bn

)r < ∞⇔
∫ ∞

1
P (sup

n

|Sn|
bn

> t
1
r )dt < ∞.

By Theorem 3.1, we get
∫ ∞

1
P (sup

n
| |Sn|

bn
> t

1
r )dt

≤ C

∫ ∞

1
t−2/rdt lim

n→∞((log n/ log 3) + 2)2
n∑

k=1

1 + EX2
k

b2
k

= C lim
n→∞(log n/ log 3 + 2)2

n∑

k=1

1 + EX2
k

b2
k

∫ ∞

1
t−

2
r dt

< ∞.
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Remark 4.4. The results in Section 4 are applied to pairwise negative
quadrant dependent and mixing type random variables by the similar
method.
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