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A UNIFORM STRONG LAW OF LARGE NUMBERS FOR

PARTIAL SUM PROCESSES OF FUZZY RANDOM SETS
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Abstract. In this paper, we consider fuzzy random sets as (measurable)
mappings from a probability space into the set of fuzzy sets and prove
a uniform strong law of large numbers for sequences of independent and
identically distributed fuzzy random sets. Our results generalize those of

Bass and Pyke(1984)and Jang and Kwon(1998 ).
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1. Introduction

The study of the fuzzy random sets, defined as measurable mappings on a
probability space, was initiated by Kwakernaak(1978) where useful basic prop-
erties were developed. Puri and Ralescu (1983) used the concept of fuzzy random
variables in generating results for random sets to fuzzy random sets. Kruse(1978)
proved a strong law of large numbers for independent identically distributed
fuzzy random variables. Artstein and Vitale(1975) proved a strong law of large
numbers(SLLN) for Rp-valued random sets and Cressie(1978) proved a SLLN for
some paticular class of Rp-valued random sets. Using R̊adstrom embedding(e.g.
R̊adstrom(1952)), Puri and Ralescu(1983) proved a SLLN for Banach space val-
ued random sets and they also proved SLLN for fuzzy random sets, which gen-
eralized all of previous SLLN for random sets. Jang and Kwon(1998) proved a
uniform strong law of large numbers for sequences of independent and identically
distributed random sets which generalized that of Bass and Pyke(1984).

In this paper we consider fuzzy random sets as (measurable) mappings from
a probability space into the set of fuzzy sets of a Euclidean space and we prove
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a uniform strong law of large numbers for sequences of independent and iden-
tically distributed fuzzy random sets. Our results generalize that of Bass and
Pyke(1984) and Jang and Kwon(1998).

2. Definitions and Preliminaries

Let C(Rp) = {A ⊂ Rp : A nonempty, compact} and K(Rp) = {A ∈ C(Rp) :
A convex}. The space C(Rp)(K(Rp)) has a linear structure induced by the
operations

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}

for A,B ∈ C(Rp)(K(Rp)), λ ∈ R. The Hausdorff distance between two sets
A,B ∈ C(Rp) is defined as

d(A,B) = inf{λ > 0 : A ⊂ B + λU, B ⊂ A+ λU},

where U = {u : ∥u∥ ≤ 1}. Denote the norm of A ∈ C(Rp) by ∥A∥ = d(A, {0}) =
supa∈A ∥a∥. Since the spaceK(Rp) is a subset ofC(Rp) these definitions induce a
topological structure on K(Rp). It is well known that neither C(Rp) nor K(Rp)
is a linear space, but they are separable complete metric spaces with the metric
d. If (Ω, P ) is a probability space, a random set is defined as a Borel measurable
function X : Ω → (C(Rp), d). The expected value EX (Aumann(1965) and Hiai
and Umegaki(1977)) is defined by EX = {Eϕ|ϕ : Ω → Rp, E∥ϕ∥ < ∞, ϕ(ω) ∈
X(ω) a.e.}. Note that if E∥X∥ < ∞, the Bochner integral can be defined as
E(coX) =

∫
coXdP and E(coX) ∈ K(Rp).

Let Xn, n ≥ 1 be a family of independent identically distributed random sets.
Puri and Ralescu(1983) proved the following:

Theorem 2.1 (Puri and Ralescu(1983)). If Xn, n ≥ 1 is a sequence of inde-
pendent and identically distributed random sets such that E(∥X∥) < ∞, then∑n

i=1 Xi/n → E(X1) a.s., the convergence being in the metric d.

A fuzzy sets of Rp is a function of u : Rp → [0, 1]. For each such fuzzy set u,
we denote by Lαu = {x ∈ Rp|u(x) ≥ α}, 0 ≤ α ≤ 1. its α− level sets. By suppu
we denote the support of u, i.e. the closure of of the set {x ∈ Rp|u(x) > 0}.
We consider the collection F(Rp) of those fuzzy sets u : Rp → [0, 1] with the
following properties ; (1) u is upper semi-continuous (2) suppu is compact (3)
{x ∈ Rp|u(x) = 1} ≠ ∅.

The spaces extends K(Rp) in the sense that for each A ∈ K(Rp), its char-
acteristic function χA ∈ K(Rp). Define, for u, v ∈ F(Rp), λ ∈ R, (u + v)(x) =
supy+z=x min[u(y), v(z)]. (λu)(x) = u(λ−1x) if λ ̸= 0 and (λu)(x) = χ{0}(x) if
λ = 0. The by simple topological arguments and properties of upper semi contin-
uous functions, it is easy to se that u+v, λ ∈ F(Rp) and Lα(u+v) = Lαu+Lαv
and Lα(λu) = λLαu for 0 ≤ α ≤ 1. In this paper we will use two metrics as
follow:

d1(u, v) =

∫ 1

0

d(Lαu, Lαv)dα
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and

d∞(u, v) = sup
α>0

d(Lα, Lαv)

which was originally defined in Puri and Ralescu(1983). Clearly d1(χA, χB) =
d∞(χA, χB) = d(A,B), for A,B ∈ K(Rp). Then F(Rp, d1) is a separable metric
spaces.

A fuzzy random set is a Borel measurable function X : Ω : F((Rp), d∞). If
X is a fuzzy random variable such that E||suppX|| < ∞, then the expected
value EX is the fuzzy set satisfying Lα(EX) = E(LαX), 0 < α ≤ 1. It is
well known that E(X) : Rp → [0, 1] is a upper semi continuous, L1(EX) ̸= ∅
and (EX) ∈ F(Rp). we will also need the concept of a convex hull of a fuzzy
set. If u ∈ F(Rp), then cou ∈ Fc(R

p), the convex hull of u is defined by
cou = inf{v ∈ Fc(R

p)|v ≥ u}. If X : Ω → F(Rp) is a fuzzy random set, then
coX : Ω → Fc(R

p) is defined by coX(ω) = coX(ω).

Theorem 2.2 (Klement and Ralescu(1986)). If Xn, n ≥ 1 is a sequence of inde-
pendent and identically distributed fuzzy random sets such that E(∥suppX1∥) <
∞, then

∑n
i=1 Xi/n → E(coX1) a.s., the convergence being in the metric d1.

If B ⊂ [0,∞)d is Borel measurable, define

S(B) =
∑
j∈B

Xj

to be the partial sum of random sets whose index is in B. Let |B| denote the
Lebesgue measure of B. Then our question in the paper is : if {Bn}∞n=1 is a

sequence of sets (not necessarily nested) with |Bn| → ∞, will S(Bn)
|Bn| converge to

EcoX a.s. and will this convergence be uniform over a large family of such sets?
We provide some answers to the questions under the condition(listed below) on
an index family A where A denote a subfamily of [0, 1]d.

Given a set B, let nB = {nx : x ∈ B} and B(δ) = {x : ρ(x, ∂B) < δ} be the
δ-annulus of ∂B, where ρ(·, ·) is Euclidean distance and ∂B is the boundary of
B. Define r(δ) = supA∈A |A(δ)|. It is said that A satisfies the smooth boundary
condition(SBC) when r(δ) → 0 as n → ∞. Under the SBC on A, Bass and
Pyke(1984) proved uniform strong law of large numbers for random variables as
follows;

Theorem 2.3 (Bass and Pyke(1984)). Let Xn, n ≥ 1 be a sequence of inde-
pendent and identically distributed random variables such that E(|X|) < ∞.
Suppose A is a collection of Lebesgue measurable subsets of [0, 1]d such that
r(δ) = supA∈A |A(δ)| → 0 as δ → 0, then

sup
A∈A

d

(
S(nA)

nd
, |A|EX

)
→ 0 a.s. as n → ∞.

Theorem 2.4 (Jang and Kwon(1998)). Let X,Xn, n ≥ 1 be a sequence of
independent and identically distributed random sets such that E(∥X∥) < ∞.
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And let A be a collection of Lebesgue measurable subsets of [0, 1]d such that
r(δ) = supA∈A |A(δ)| → 0 as δ → 0. Then

sup
A∈A

d

(
S(nA)

nd
, |A|EX

)
→ 0 a.s. as n → ∞.

3. Main Results

Theorem 3.1. Let X,Xn, n ≥ 1 be a sequence of independent and identically
distributed fuzzy random sets such that E(∥suppX∥) < ∞. And let A be a collec-
tion of Lebesgue measurable subsets of [0, 1]d such that r(δ) = supA∈A |A(δ)| → 0
as δ → 0. Then

sup
A∈A

d1

(
S(nA)

nd
, |A|EcoX

)
→ 0 a.s. as n → ∞.

Before getting into the proof of theorem 3.1 we need a lemma as follows;

Lemma 3.1. For u, v ∈ F(Rp) and a, b > 0

(1) d1(au, bu) ≤ |a− b|∥u∥
(2) d1(u, u+ v) ≤ ∥v∥
(3) d1(au, av) = |a|d1(u, v)

Proof. ∥u∥ = d1(u, χ{0}) =
∫ 1

0
d(Lαu, Lα(0))dα =

∫ 1

0
∥Lαu∥dα

For (1)

d1(au, bv) =

∫ 1

0

d(Lα(au), Lα(bu))dα =

∫ 1

0

d(aLα(u), bLα(u))dα

≤
∫ 1

0

|a− b|∥Lα(u)∥dα ≤ |a− b|
∫ 1

0

∥Lαu∥dα

≤
∫ 1

0

|a− b|∥Lα(u)∥dα ≤ |a− b|
∫ 1

0

∥Lαu∥dα

For(2)

d1(u, u+ v) =

∫ 1

0

d(Lα(u), Lα(u+ v))dα =

∫ 1

0

d(Lα(u), Lα(v + v))dα

=

∫ 1

0

d(Lα(u), Lαu+ Lαv)dα ≤
∫ 1

0

∥Lαv∥dα ≤ ∥v∥

For (3)

d1(au, av) =

∫ 1

0

d(Lα(au), Lα(av))dα =

∫ 1

0

|a|d(Lα(u), Lα(v))dα = |a|d(u, v)

�
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Proof of the theorem 3.1 First of all, if x = (x1, x2, · · · , xd) is fixed, denote
(0,x] = {(y1, y2, · · · , yd) : 0 < yi ≤ xi, i = 1, 2, · · · d} and ♯ cardinality, then by
theorem 2.1,

S(n(0,x])

♯(J ∩ n(0,x])
→ EcoX a.s..

Hence, we have

n−dS(n(0,x]) =
♯(J ∩ n(0,x])

nd
· S(n(0,x])

♯(J ∩ n(0,x])
→ |(0,x]|EcoX.

Secondly, if A can be obtained by a finite number of unions and differences of
rectangles of the form (0,x], then by linearity we have

n−dS(nA) → |A|EcoX a.s..

If m is an integer, let Cj = m−1(j − 1, j], and for any A ∈ A, let R−
m(A) =

∪Cj⊂ACj and R+
m(A) = ∪Cj∩A̸=∅Cj . Then R−

m(A) and R+
m(A) are inner and

outer fits of A by cubes of size 1/m. Since the furthest any point of R+
m(A) \

R−
m(A) can be from the boundary of A is the diameter of a cube of size 1/m, we

have by assumption

sup
A∈A

|R+
m(A) \R−

m(A)| ≤ r(
d1/2

m
).

Let R−
m = {R−

m(A) : A ∈ A} and R△
m = {R+

m(A) \R−
m(A) : A ∈ A}. Since each

A ∈ A is contained in [0, 1]d it should be evident that ♯R−
m and ♯R△

m are finite.
Then, for m fixed, we have

lim sup
n→∞A∈A

d1(n
−dS(nA), |A|EcoX) ≤ lim sup

n→∞A∈A
n−ddH(S(nA), S(nR−

m(A)))

+ lim sup
n→∞A∈A

d1(n
−dS(nR−

m(A)), |R−
m(A)|EcoX)

+ lim sup
n→∞A∈A

d1(|A|EX, |R−
m(A)|EcoX)

= I1 + I2 + I3

For (I1), notice that by lemma (2)

d1(S(nA), S(nR−
m(A))) = d1(

∑
j∈nA

Xj ,
∑

j∈nR−
m(A)

Xj) ≤
∑

j∈(nR+
m(A)\nR−

m(A))

∥suppXj∥.

Therefore,

I1 ≤ lim sup
n→∞,A∈A

n−d
∑

j∈(nR+
m(A)\nR−

m(A))

∥suppXj∥

≤ lim sup
n→∞

max
B∈R△

m

n−d
∑
j∈B

∥suppXj∥

≤ E∥suppX∥ max
B∈R△

m

|B| ≤ E∥suppX∥r(d
1/2

m
) a.s.

(3.1)
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where in the third inequality we used the classical Kolmogorov strong law of
large numbers for real random variables.

For (I2), since ♯R−
m < ∞ and every set B ∈ R−

m can be obtained by a finite
number of unions and differences of rectangles of the form (0,x], by theorem 2.1
we have

I2 = lim sup
n→∞,A∈A

d1(n
−dS(nR−

m(A)), |R−
m(A)|EcoX)

≤ lim sup
n→∞,B∈R−

m

d1(n
−dS(nB), |B|EcoX) −→ 0 a.s..

(3.2)

Finally, let us do I3. By lemma (1), d1(|A|EcoX, |R−
m(A)|EcoX) ≤ |A \

R−
m(A)|∥EcoX∥. Therefore,

I3 ≤ ∥EcoX∥r(d
1/2

m
). (3.3)

Summing (3.1), (3.2) and (3.3) up, we have

lim sup
n→∞A∈A

d1(n
−dS(nA), |A|EcoX) = (∥EcoX∥+ E∥coX∥)r(d

1/2

m
) a.s.. (3.4)

Letting m → ∞, the right side of (3.4) approaches to 0, which completes the
proof of theorem 3.1.

Remark. Suppose that we are given a sequence of sets Bn such that |Bn| → ∞,
as in section 2. Let An = n−1Bn and let A = {An}. If A satisfies SBC and |An|
is bounded away from 0, then

lim sup
n→∞

d1

(
S(Bn)

|Bn|
, EcoX

)
= lim sup

n→∞
d1

(
S(nAn)

nd|An|
, EcoX

)
= lim sup

n→∞
|An|−1d1

(
S(nAn)

nd
, |An|EcoX

)
≤ lim sup

n→∞
|An|−1 lim sup

A∈A
d1

(
S(nA)

nd
, |A|EcoX

)
= 0 a.s..
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