• 제목/요약/키워드: stress corrosion cracking

검색결과 399건 처리시간 0.031초

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A.;Mori, G.;Panzenbock, M.;Pippan, R.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.172-176
    • /
    • 2015
  • Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구 (Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique)

  • 이연주;김성우;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험 (C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser)

  • 김재도;문주홍;정진만;김철중
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1998년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

Effect of serrated grain boundary on stress corrosion cracking of Alloy 600

  • Kim, H.P.;Choi, M.J.;Kim, S.W.;Kim, D.J.;Lim, Y.S.;Hwang, S.S.
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1131-1137
    • /
    • 2018
  • The effect of a serrated grain boundary on stress corrosion cracking (SCC) of Alloy 600 was investigated in terms of improvement of SCC resistance. Serrated grain boundaries and straight grain boundaries were obtained by controlled heat treatment. SCC cracks preferentially initiated and grew at grain boundaries normal to the tensile loading axis. Resolved tensile stress normal to the grain boundary was lower in serrated grain boundaries compared to straight grain boundaries. The specimen with serrated grain boundaries showed higher SCC resistance than that with straight grain boundaries due to a lower resolved tensile stress normal to the grain boundary.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

A106 Gr B강 다층용접부의 황화물 응력부식균열 특성 (The sulfide stress corrosion cracking characteristics of multi-pass welded A106 Gr B steep pipe)

  • 이규영;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.20-25
    • /
    • 2008
  • Sulfide stress corrosion cracking (SSCC) of materials exposed to oilfield environment containing hydrogen sulfide ($H_2S$) has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_2S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $H_2S$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

산성안개하에서 기계·구조용강의 응력부식균열 거동 (Behavior of Stress Corrosion Cracking in Structural Steel under Acid Fog Environment)

  • 임용호;김민건
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.291-295
    • /
    • 1997
  • The tests of stress corrosion cracking in structural carbon steel were carried out under the conditions of acid fog and general water. As the result of measurement SCC rupture time under acid fog was observed to be much shorter than that of general water at the same stress level. Therefore, acid fog drops the SCC strength in structural carbon steel due to strong corrosion. In the SCC process by acid fog, crack initiation was caused by pit corrosion and local stress concentration, and distinctive feature of crack growth shows branching since crack grows to the corrosion direction. Moreover, corrosion products were observed by clevage corrosion on the crack surfaces.

  • PDF

터빈 운전 신뢰성 향상을 위한 응력부식균열 평가 (The Evaluation of the Stress Corrosion Cracking for Improvement of Reliability in Turbine Operation and Maintenance)

  • 강용호;송정일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.280-287
    • /
    • 2008
  • In case of low pressure steam turbine used in power plant, it was operated in wet steam and high stress condition. Therefore, it is possible that the corrosion damage of low pressure was induced by this condition. According to previous study, about 30% of total blade failure correspond to corrosion fatigue or SCC(stress corrosion cracking) in low pressure turbine. Especially, LSB(last stage bucket) of low pressure turbine has a higher hardness to prevent erosion damage due to water droplet however, generally this is more dangerous for SCC damage. Therefore, to improve reliability of turbine blade. various methods for SCC evaluation has been developed. In this study, the crack found in LSB during in-service inspection was evaluated using microstructure analysis and stress analysis. From the stress analysis, the optimum size of fillet to remove the crack was proposed. And also, the reliability was evaluated for modified LSB using GOODMAN diagram.

  • PDF

알루미늄 6061-T6 합금에 대한 양극산화층이 해수 내 부식 및 응력부식균열에 미치는 영향 (Effect on Anodizing Oxide Film for Aluminum 6061-T6 Alloy on Corrosion and Stress Corrosion Cracking in Seawater)

  • 신동호;황현규;정광후;김성종
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.219-226
    • /
    • 2020
  • This paper investigated the characteristics of anodized aluminum 6061-T6 alloy for corrosion and stress corrosion cracking(SCC) under natural seawater. The hard anodizing oxide film formed on the 6061-T6 was a uniform thickness of about 25 ㎛. The corrosion characteristics were performed with a potentiodynamic polarization test. SCC was characterized by a slow strain rate tensile test under 0.005mm/min rate. As a result, the anodizing film showed no significant effect on SCC in the slow strain rate test. However, the corrosion current density of base metal was measured to be approximately 13 times higher than that of the anodized specimen. Therefore, the anodizing film significantly improved the corrosion resistance of 6061-T6 alloy in natural seawater.