Browse > Article
http://dx.doi.org/10.14773/cst.2013.12.2.093

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique  

Lee, Yeon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Kim, Sung-Woo (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Kim, Hong-Pyo (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Hwang, Seong-Sik (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.12, no.2, 2013 , pp. 93-101 More about this Journal
Abstract
The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.
Keywords
corrosion fatigue; direct current potential drop method; electrochemical noise measurement; Nickel-base alloy; primary water stress corrosion cracking; Weibull distribution function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. L. Andresen, F. P. Ford, K. Gott, R. L. Jones, P. M. Scott, T. Shoji, R.W. Staehle and R.L. Tapping, Expert Panel Report on Proactive Materials Degradation Assessment (NUREG/CR-6923), U.S.NRC (2007).
2 H. Fujimori, I. G. Sanchez, K. Gott, J. Heldt, S. S. Hwang, J. J. Richard, K. S. Kang, L. Kupca, A. Molander, P. Scott, K. Takamori, H. Tanaka, M. Widera, S. Yaguchi, A. Yamamoto and N. Yamashita, Stress Corrosion Cracking in Light Water Reactors : Good Practices and Lessons Learned (No. NP-T-3.13), IAEA (2011).
3 C. A. Loto and R. A. Cottis, Corrosion, 43, 499 (1987).   DOI   ScienceOn
4 J. Stewart, D. B. Wells, P. M. Scott and D. E. Williams, Corros. Sci., 33, 73 (1992).   DOI   ScienceOn
5 R. A. Cottis, Corrosion, 57, 265 (2001).   DOI   ScienceOn
6 H. A. A. Al-Mazeedi and R. A. Cottis, Electrochim. Acta, 49, 2787 (2004).   DOI   ScienceOn
7 J. M. Sanchez-Amaya, R. A. Cottis and F. J. Botana, Corros. Sci., 47, 3280 (2005).   DOI   ScienceOn
8 T. Anita, M. G. Pujar, H. Shaikh, R. K. Dayal and H. S. Khatak, Corros. Sci., 48, 2689 (2006).   DOI   ScienceOn
9 S. W. Kim and H. P. Kim, Corros. Sci., 51, 191 (2009).   DOI   ScienceOn
10 M. A. Hicks and A. C. Pickard, Int. Journ. of Fracture, 20, 91 (1982).   DOI
11 W. Nelson, Applied Life Data Analysis, John Wiley & Sons, New York (1982).