Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.4.172

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions  

Visser, A. (CD Laboratory of Localized Corrosion, Montanuniversitaet Leoben)
Mori, G. (CD Laboratory of Localized Corrosion, Montanuniversitaet Leoben)
Panzenbock, M. (Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben)
Pippan, R. (Erich Schmid Institute of Materials Science, Austrian Academy of Science)
Publication Information
Corrosion Science and Technology / v.14, no.4, 2015 , pp. 172-176 More about this Journal
Abstract
Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.
Keywords
corrosion fatigue cracking; stress corrosion cracking; austenitic stainless steel; pitting; chloride solutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ramya, T. Anita, H. Shaikh and R. K. Dayal, Corros. Sci., 52, 2114 (2010).   DOI   ScienceOn
2 F. M. Bayoumi and W. A. Ghanem, Mater. Lett., 59, 3311 (2005).   DOI   ScienceOn
3 J. W. Park, Rao V. Shankar and H. S. Kwon, Corrosion, 60, 1103 (2004).
4 Mannesmannrohren-Werke, Lexikon der Korrosion, Band 1, Mannesmann-AG, Dusseldorf (1970).
5 V. S. Raja and T. Shoji, Stress Corrosion Cracking: Theory and Practice, Woodhead Publishing, India (2011).
6 K-H. Tostmann, Korrosion, Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2001).
7 J. M. Silcock, Corrosion, 38, 144 (1982).   DOI   ScienceOn
8 T. Magnin, ISIJ Int., 35, 223 (1995).   DOI
9 V. G. Gavriljuk and H. Berns, High Nitrogen Steels, p. 195, Springer-Verlag, Berlin Heidelberg (1999).
10 M. O. Speidel, Metall. Trans. A, 12, 779 (1981).   DOI
11 P. P. Milella, Fatigue and Corrosion in Metals, Springer-Verlag, Rome (2013).
12 S. I. Rokhlin, J. Y. Kim, H. Nagy and B. Zoofan, Eng. Fract. Mech., 62, 425 (1999).   DOI   ScienceOn
13 F. C. Campbell, Metallurgy and Engineering Alloys, p. 330, ASM International (2008).
14 E. Bardal, Corrosion and Protection, Springer-Verlag, London (2004).
15 C. Vichytil, Beitrag zum Verstandnis der Schwingungsrisskorrosion austenitischer Stahle, Dissertation, Leoben, Montanuniversitat Leoben (2012).
16 R.Sonnleitner, Zur Schwingungsrisskorrosion hochfester austenitischer Stahle, Dissertation, Leoben, Montanuniversitat Leoben (2009).
17 ASTM E466-96, Conducting force controlled constant amplitude axial fatigue tests of metallic materials, ASTM International (2002).