DOI QR코드

DOI QR Code

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A. (CD Laboratory of Localized Corrosion, Montanuniversitaet Leoben) ;
  • Mori, G. (CD Laboratory of Localized Corrosion, Montanuniversitaet Leoben) ;
  • Panzenbock, M. (Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben) ;
  • Pippan, R. (Erich Schmid Institute of Materials Science, Austrian Academy of Science)
  • Received : 2015.06.12
  • Accepted : 2015.07.09
  • Published : 2015.08.31

Abstract

Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

Keywords

References

  1. S. Ramya, T. Anita, H. Shaikh and R. K. Dayal, Corros. Sci., 52, 2114 (2010). https://doi.org/10.1016/j.corsci.2010.02.028
  2. F. M. Bayoumi and W. A. Ghanem, Mater. Lett., 59, 3311 (2005). https://doi.org/10.1016/j.matlet.2005.05.063
  3. J. W. Park, Rao V. Shankar and H. S. Kwon, Corrosion, 60, 1103 (2004).
  4. Mannesmannrohren-Werke, Lexikon der Korrosion, Band 1, Mannesmann-AG, Dusseldorf (1970).
  5. V. S. Raja and T. Shoji, Stress Corrosion Cracking: Theory and Practice, Woodhead Publishing, India (2011).
  6. K-H. Tostmann, Korrosion, Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2001).
  7. J. M. Silcock, Corrosion, 38, 144 (1982). https://doi.org/10.5006/1.3579267
  8. T. Magnin, ISIJ Int., 35, 223 (1995). https://doi.org/10.2355/isijinternational.35.223
  9. V. G. Gavriljuk and H. Berns, High Nitrogen Steels, p. 195, Springer-Verlag, Berlin Heidelberg (1999).
  10. M. O. Speidel, Metall. Trans. A, 12, 779 (1981). https://doi.org/10.1007/BF02648342
  11. P. P. Milella, Fatigue and Corrosion in Metals, Springer-Verlag, Rome (2013).
  12. S. I. Rokhlin, J. Y. Kim, H. Nagy and B. Zoofan, Eng. Fract. Mech., 62, 425 (1999). https://doi.org/10.1016/S0013-7944(98)00101-5
  13. F. C. Campbell, Metallurgy and Engineering Alloys, p. 330, ASM International (2008).
  14. E. Bardal, Corrosion and Protection, Springer-Verlag, London (2004).
  15. C. Vichytil, Beitrag zum Verstandnis der Schwingungsrisskorrosion austenitischer Stahle, Dissertation, Leoben, Montanuniversitat Leoben (2012).
  16. R.Sonnleitner, Zur Schwingungsrisskorrosion hochfester austenitischer Stahle, Dissertation, Leoben, Montanuniversitat Leoben (2009).
  17. ASTM E466-96, Conducting force controlled constant amplitude axial fatigue tests of metallic materials, ASTM International (2002).

Cited by

  1. Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System vol.18, pp.2, 2015, https://doi.org/10.14773/cst.2019.18.2.49