DOI QR코드

DOI QR Code

Effect of serrated grain boundary on stress corrosion cracking of Alloy 600

  • Kim, H.P. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Choi, M.J. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, S.W. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, D.J. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Lim, Y.S. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Hwang, S.S. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • Received : 2018.03.25
  • Accepted : 2018.05.29
  • Published : 2018.10.25

Abstract

The effect of a serrated grain boundary on stress corrosion cracking (SCC) of Alloy 600 was investigated in terms of improvement of SCC resistance. Serrated grain boundaries and straight grain boundaries were obtained by controlled heat treatment. SCC cracks preferentially initiated and grew at grain boundaries normal to the tensile loading axis. Resolved tensile stress normal to the grain boundary was lower in serrated grain boundaries compared to straight grain boundaries. The specimen with serrated grain boundaries showed higher SCC resistance than that with straight grain boundaries due to a lower resolved tensile stress normal to the grain boundary.

Keywords

References

  1. P.E. Macdonald, V.N. Shah, L.W. Ward, P.G. Ellison, Steam Generator Tube Failures, NUREG/CR, 1966, pp. 78-114, 6365.
  2. P. Tran, PWR Steam Generator Replacement Survey Results, EPRI, 2005, 1011259.
  3. B. Grimmel, U.S. Plant Experience with Alloy 600 Cracking and Boric Acid Corrosion of Light-water Reactor Pressure Vessel Materials, NUREG, 2005, pp. 9-13, 1823.
  4. Y.S. Lim, H.P. Kim, S.S. Hwang, Microstructural characterization on intergranular stress corrosion cracking of alloy 600 in PWR primary water environment, J. Nucl. Mater. 440 (2013) 46-54. https://doi.org/10.1016/j.jnucmat.2013.03.088
  5. Y.S. Yi, S.H. Eom, H.P. Kim, J.S. Kim, Nickel boride (NiB) as an inhibitor for an IGSCC of alloy 600 and its applicability, J. Nucl. Mater. 347 (2005) 151-160. https://doi.org/10.1016/j.jnucmat.2005.08.011
  6. Y.S. Lim, S.S. Hwang, S.W. Kim, H.P. Kim, Primary water stress corrosion cracking behavior of an alloy 600/182 weld, Corros. Sci. 100 (2015) 12-22. https://doi.org/10.1016/j.corsci.2015.06.005
  7. S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Role of grain boundary carbides in cracking behavior of Ni base alloys, Nucl. Eng. Tech. 45 (2013) 73-79. https://doi.org/10.5516/NET.07.2012.013
  8. S.S. Hwang, H.P. Kim, SCC analysis of alloy 600 tubes from a retired steam generator, J. Nucl. Mater. 440 (2013) 129-135. https://doi.org/10.1016/j.jnucmat.2013.04.061
  9. S.S. Hwang, H.P. Kim, D.H. Lee, U.C. Kim, J.S. Kim, The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead, J. Nucl. Mater. 275 (1999) 28-36. https://doi.org/10.1016/S0022-3115(99)00111-7
  10. S.S. Hwang, H.P. Kim, Y.S. Lim, J.S. Kim, L. Thomas, Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead, Corros. Sci. 49 (2007) 3797-3811. https://doi.org/10.1016/j.corsci.2007.03.040
  11. S.W. Kim, H.P. Kim, Electrochemical noise analysis of PbSCC of Alloy 600 SG tube in caustic environments at high temperature, Corros. Sci. 51 (2009) 191-196. https://doi.org/10.1016/j.corsci.2008.10.014
  12. B.S. Rho, H.U. Hong, S.W. Nam, Analysis of the intergranular cavitation of Nb-a 286 alloy in high temperature low cycle fatigue using EBSD technique, Scr. Mater. 43 (2000) 167-173. https://doi.org/10.1016/S1359-6462(00)00387-0
  13. M. McMurtrey, G. Was, L. Patrick, D. Farkas, Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy, Mater. Sci. Eng. A 528 (2011) 3730-3740. https://doi.org/10.1016/j.msea.2011.01.073
  14. K. Fukuya, H. Nishioka, K. Fujii, T. Miura, T. Torimaru, An EBSD examination of SUS316 stainless steel irradiated to 73 dpa and deformed at 593 K, J. Nucl. Mater. 417 (2011) 958-962. https://doi.org/10.1016/j.jnucmat.2010.12.301
  15. E. West, G. Was, A model for the normal stress dependence of intergranular cracking of irradiated 316 L stainless steel in supercritical water, J. Nucl. Mater. 408 (2011) 142-152. https://doi.org/10.1016/j.jnucmat.2010.11.012
  16. E.A. West, M.D. McMurtrey, Z. Jiao, G.S. Was, Role of localized deformation in irradiation-assisted stress corrosion cracking initiation, Metall. Trans. A 43 (2012) 136-146. https://doi.org/10.1007/s11661-011-0826-5
  17. T. Watanabe, An approach to grain boundary design for strong and ductile polycrystals, Res. Mechanica 11 (1984) 47-84.
  18. G. Palumbo, P. King, P. Lichtenberger, K. Aust, U. Erb, Grain boundary design and control for intergranular stress-corrosion resistance, Scr. Metall. Mater. 25(1991) 1775-1780. https://doi.org/10.1016/0956-716X(91)90303-I
  19. E.M. Lehockey, A.M. Brennenstuhl, I. Thompson, On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking, Corros. Sci. 46 (2004) 2383-2404. https://doi.org/10.1016/j.corsci.2004.01.019
  20. V. Gertsman, S.M. Bruemmer, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater. 49 (2001) 1589-1598. https://doi.org/10.1016/S1359-6454(01)00064-7
  21. J. Gorman, PWR Reactor Vessel Alloy 600 Issues', Companion Guide to the ASME Boiler & Pressure Vessel Code : Criteria and Commentary on Select Aspects of the Boiler & Pressure Vessel and Piping Codes, ASME press, 2009 (chapter 44).
  22. J. Harris, V. Moroney, J. Gorman, Pressurized Water Reactor Generic Tube Degradation predictions-U.S. Recirculating Steam Generators with Alloy 600TT and Alloy 690TT, EPRI, July 2003, 1003589.
  23. S.I. Baik, M.J. Olszta, S.M. Bruemmer, D.N. Seidmana, Grain-boundary structure and segregation behavior in a nickel-base stainless alloy, Scr. Mater. 66 (2012) 809-812. https://doi.org/10.1016/j.scriptamat.2012.02.014
  24. H. Kawamura, H. Hirano, Role of grain boundary characteristics in caustic IGA/SCC resistance of thermally-treated Alloy 690 and shot-peened Alloy 800, in: Proc. 9th 11th International Symposium on Environmental Degradation of Materials in Nuclear Power SystemeWater Reactors, 1999, pp. 601-610.
  25. C. Shoemaker, in: Proc.: Workshop on Thermally Treated Alloy 690 Tubes for Nuclear Steam Generators (NP-4665S-sr), EPRI, Palo Alto, CA, 1986.
  26. S.S. Hwang, H.P. Kim, D.H. Lee, U.C. Kim, J.S. Kim, Corrosion behavior of Ni-based alloys in lead-contaminated water, in: Proc. Contributions of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors, vol. 1, French Nuclear Energy Society, Societe Francaise d'Energie Nucleaire [SFEN], Fontevraud, France, 1998, pp. 403-415.
  27. T. Sakai, T. Senjuh, K. Aoki, T. Shigemitsu, Y. Kishi, Lead-Induced stress corrosion cracking of Alloy 600 and 690 in high-temperature water, in: Proc. 5th International Symposium on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, 1991, pp. 764-772.
  28. J.M. Larson, S. Floreen, Metallurgical factors affecting the crack growth resistance of a superalloy, Metall. Trans. A 8 (1977) 51-55. https://doi.org/10.1007/BF02677263
  29. H. Loyer Danflou, M. Marty, A. Walder, in: S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (Eds.), Superalloys, the Minerals, Metals, and Materials Society, Warrendale, PA, 1992, pp. 63-72.
  30. H.U. Hong, I.S. Kim, B.G. Choi, M.Y. Kim, C.Y. Jo, The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy, Mat. Sci. Eng. A 517 (2009) 125-131. https://doi.org/10.1016/j.msea.2009.03.071
  31. G.H. Bishop, W.H. Hartt, G.A. Bruggeman, Grain boundary faceting of (1010) tilt boundaries in zinc, Acta Metall. 19 (1971) 37-46. https://doi.org/10.1016/0001-6160(71)90159-3
  32. T.E. Hsieh, R.W. Balluffi, Observations of roughening/de-faceting phase transitions in grain boundaries, Acta Metall. Mater. 37 (1989) 2133-2139. https://doi.org/10.1016/0001-6160(89)90138-7
  33. K.J. Kim, H.U. Hong, S.W. Nam, A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel, Mater. Chem. Phys. 126 (2011) 480-483. https://doi.org/10.1016/j.matchemphys.2010.12.025
  34. A.K. Koul, G.H. Gessinger, On the mechanism of serrated grain boundary formation xn ni-based superalloys, Acta Metall. 31 (1983) 1061-1069. https://doi.org/10.1016/0001-6160(83)90202-X
  35. A. Stratulat, J.A. Duff, T.J. Marrow, Grain boundary structure and intergranular stress corrosion crackinitiation in high temperature water of a thermally sensitized austenitic stainless steel, observed in situ, Corros. Sci. 85 (2014) 428-435. https://doi.org/10.1016/j.corsci.2014.04.050
  36. E. West, G. Was, A model for the normal stress dependence of intergranular cracking of irradiated 316 L stainless steel in supercritical water, J. Nucl. Mater. 408 (2011) 142-152. https://doi.org/10.1016/j.jnucmat.2010.11.012
  37. B. Alexandreanu, Grain Boundary Deformation-induced Intergranular Stress Corrosion Cracking of Ni-16Cr-9Fe in 360oC Water, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 2002.
  38. R. Bandy, D. van Rooyen, Tests with Inconel 600 to Obtain Quantitative Stress Corrosion Cracking Data for Evaluating Service Performance, BNL-NUREG-31814, U.S. Nuclear Regulatory Commission, Washington, DC, 1983.
  39. G.P. Airey, The effect of carbon content and thermal treatment on the SCC behavior of Inconel Alloy 600 steam generator tubing, Corrosion 35 (1979) 129-136. https://doi.org/10.5006/0010-9312-35.3.129
  40. J.R. Crum, Effect of composition and heat treatment on stress corrosion cracking of Alloy 600 steam generator tubes in sodium hydroxide, Corrosion 38 (1982) 40-45. https://doi.org/10.5006/1.3577317

Cited by

  1. Investigation on the formation of grain boundary serrations in additively manufactured superalloy Haynes 230 vol.32, pp.3, 2018, https://doi.org/10.2351/7.0000112
  2. Effects of solution annealing on the precipitation of dendrite-like carbides during continuous cooling in Alloy 690 vol.15, pp.None, 2018, https://doi.org/10.1016/j.jmrt.2021.09.150