• 제목/요약/키워드: steady and incompressible

검색결과 147건 처리시간 0.02초

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발 (Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method)

  • 정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

비구조형 삼각형 격자에 대한 SMAC기법을 이용한 비압축성 나비어-스톡스 방정식 해법 개발 (Development of an Incompressible Navier-Stokes Solver using SMAC Algorithm on Unstructured Triangular Meshes)

  • 남현식;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.55-60
    • /
    • 1997
  • An unstructured finite volume method is presented for seeking steady and unsteady flow solutions of the two-dimensional incompressible viscous flows. In the present method, SMAC-type algorithm is implemented on unstructured triangular meshes, using second order upwind scheme for the convective fluxes. Validation tests are made for various steady and unsteady incompressible flows. Convergence characteristics are examined and accuracy comparisons are made with some benchmark solutions.

  • PDF

가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사 (NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD)

  • 이형로;유일용;곽인근;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

비정렬격자 압력기준 유동해석기법을 이용한 정상 및 비정상 유동해석 (Steady and Unsteady flows with Pressure-based Unstructured-grid Navier-Stokes Solver PUNS)

  • 김종태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.98-105
    • /
    • 1999
  • The Pressure-based Unstructured-grid Navier-Stokes Solver PUNS-2/3D for incompressible steady and unsteady viscous flows has been developed. It is based on nonstaggered cell-centered finite volume method. Second-order upwind scheme with least-square reconstruction is used for convective fluxes. The SIMPLE method is implemented to couple the pressure and velocity fields. And the time derivatives in the momentum equations are discretised using a second-order Euler backward-differencing scheme. The discretised linear equations are solved by the preconditioned Biconjugate Gradient Stabilized method(Bi-CGSTAB). The developed solver is applied to validation problems using hybrid meshes.

  • PDF

PARALLEL ALGORITHMS FOR INTEGRATION OF NAVIER-STOKES EQUATIONS BASED ON THE ITERATIVE SPACE-MARCHING METHOD

  • Skurin Leonid I.
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.67-72
    • /
    • 2005
  • This research is based on the iterative space-marching method for incompressible and compressible Navier-Stokes equations[1-4]. A principle of parallel computational schemes construction for steady and unsteady problems is suggested. It is analytically proven that convergence of these schemes is unconditional for incompressible case. When the parallel scheme is used the total volume of computations is the sum of a large number of independent and equal parts. Estimation of the speed-up K shows that K > 1000 in ideal case. First results of using the parallel schemes are presented.

AN IMPLICIT NUMERICAL SCHEME FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON CURVILINEAR GRIDS

  • Fayyaz, Hassan;Shah, Abdullah
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.881-898
    • /
    • 2018
  • This article deals with implementation of a high-order finite difference scheme for numerical solution of the incompressible Navier-Stokes equations on curvilinear grids. The numerical scheme is based on pseudo-compressibility approach. A fifth-order upwind compact scheme is used to approximate the inviscid fluxes while the discretization of metric and viscous terms is accomplished using sixth-order central compact scheme. An implicit Euler method is used for discretization of the pseudo-time derivative to obtain the steady-state solution. The resulting block tridiagonal matrix system is solved by approximate factorization based alternating direction implicit scheme (AF-ADI) which consists of an alternate sweep in each direction for every pseudo-time step. The convergence and efficiency of the method are evaluated by solving some 2D benchmark problems. Finally, computed results are compared with numerical results in the literature and a good agreement is observed.

FREE SURFACE WAVES OF A TWO-LAYER FLUID OVER A STEP

  • Choi, Jeong-Whan;Whang, Sung-Im
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.173-181
    • /
    • 2000
  • The objective of this paper is to study two dimensional steady gravitational waves on the interface between two immiscible, inviscid and incompressible fluids bounded above by a horizontal rigid boundary and below by a rigid step. A KdV equation for the first order perturbation in an asymptotic expansion can appear. However the coefficient of the KdV theory fails in that case. By a unified asymptotic method, we overcome this difficulty and derive a modified KdV equation with forcing. We find homogeneous steady solutions and present numerical solutions.

  • PDF

비압축성 유동 해석을 위한 압축성 유동 해석자 확장 (Extension of Compressible Flow Solver to Incompressible Flow Analysis)

  • 김동욱;김민수;이승수
    • 한국항공우주학회지
    • /
    • 제49권6호
    • /
    • pp.449-456
    • /
    • 2021
  • 본 연구에서는 저마하수 예조건화 기법이 적용된 기존 압축성 해석자의 해석 범위를 최소한의 수정으로 비압축성 유동해석이 가능하도록 확장하는 전략을 제시하였다. 이를 위해 압축성 총 에너지 방정식과 동일한 형태의 에너지 방정식을 사용하였다. 이러한 에너지 방정식은 비압축성 지배방정식인 연속방정식, 열에너지 방정식과 역학적 에너지방정식의 선형 조합을 통해 얻어진다. 이렇듯 압축성 방정식과 동일한 형태를 갖는 비압축성 지배방정식에 시간 전진 기법을 적용하기 위해 Turkel의 가상 압축성 기법을 적용하였다. 또한 Roe 평균이 공통의 압축성/비압축성 지배방정식에서 모두 유효함을 보였다. 압축성 해석자에 위 내용을 적용하여 비압축성 해석이 가능하도록 확장하는 과정은 본래의 압축성 해석자를 이용한 압축성 해석에 아무런 영향이 없다. 확장된 해석자를 통한 비압축성 해석 검증을 위해 비점성, 층류 그리고 난류 유동에 대한 순차적 해석을 수행하였다.