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FREE SURFACE WAVES OF A TWO-LAYER FLUID
OVER A STEP

JEONGWHAN CHOI AND SUNGIM WHANG

ABSTRACT. The objective of this paper is to study two dimensional
steady gravitational waves on the interface between two immiscible,
inviscid and incompressible fluids bounded above by a horizontal rigid
boundary and below by a rigid step. A KdV equation for the first
order perturbation in an asymptotic expansion can appear. However
the coefficient of the KdV theory fails in that case. By a unified
asymptotic method, we overcome this difficulty and derive a modified
KdV equation with forcing. We find homogeneous steady solutions
and present numerical solutions.

1. Introduction

Since Peters and Stoker ([1]) studied two-dimensional solitary waves in
a two-layer medium of immiscible fluids there have been growing interests
in studying interfacial waves in a two layer fluid. Many interesting wave
patterns have been found and new mathematical methods have also been
developed in various fluid domains. Numerical studies of steady flow of
a two-layer incompressible fluid over a semi-circular bump bounded by a
free or rigid upper boundary were carried out by Forbes ([2]), and Sha
and Vanden-Broeck ([3]), and an asymptotic approach for the case of a
rigid upper boundary or a free surface with surface tension were studied
by Choi, Sun and Shen ([4],[5]). A linear study for interfacial waves of
two-layer fluid over a step was studied by Moni and King ([6]) numerically
and nonlinear study based on KdV theory of single layer fluid over a step
was studied by Shen ([7]). However, for some special values of the depth
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Fig.1. Fluid Domain

and density ratios of the two-layer fluid, the coefficient of the nonlinear
term in the KdV equation vanishes and the asymptotic expansion for
the KdV theory can fail. In this paper, to overcome this difficulty, we
apply a refined asymptotic scheme developed in [5] to derive the so-called
modified KdV equations with forcing for the interfacial wave of a two
layer fluid over a step under the condition that the nonlinear term in
the KdV equation vanishes. The modified KdV equation possesses non-
periodic wave solutions, which are obtained as limiting solutions of its
periodic solutions. We formulate the problem and derive the modified
KdV equation with forcing as a model equation in Sec. 2. In Sec. 3
we present homogeneous solutions and numerical solutions of the model
equation.
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2. Formulation and Model Equation

We consider a two-layer immiscible ideal fluid flow in a two dimensional
channel bounded above by a horizontal rigid boundary and below by a
rigid step (Fig. 1). The domains of the upper fluid with a constant
density p** and the lower fluid with a constant density p*~ are denoted
by Q** and Q*~ respectively. Since a two-dimensional object at the lower
boundary is moving with a constant speed C, we choose a coordinate
system moving with the object so that, in reference to the coordinate
system, the object is stationary and the fluid flow becomes steady. Then
the governing equations and boundary conditions are as follows:

In %,

*+ *t
U + 0y =1,

st oxd *t, %+ *E f x+
wuT + vt us = it /o,

*+ s ¥, xk *+ f ¥t .
T + o E = —prt 0" — g

at the interface, y* = n*,

w gt — o™ =0,

prt-pT =0

at the rigid boundaries, y* = H**(z*),
VT -t HE =0

where (u**, v*%) are velocities, p** are pressures, g is the gravitational ac-

celeration constant, H**(z*) = H**, H* (z*) = —H* + b*(z*), and
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b*(xz*) are the equation of the bottom. We define the following non-
dimensional variables:
e=H/L<<1, n=¢'q"/H", p* =p™*/gH" p",
(z,y) = (ex*,y")/H*", (u*,v*) = (gH*") " (u*, e'v™¥),
pt=p")p"T <1, pm=p"/p" =1, U=C/(gH"),
h=H*JH™, b(x) = b (@) (B ),

where L is the horizontal scale, H is the vertical scale, H*t and H*~
are the equilibrium depths of the upper and lower fluids at z* = —o0
respectively. We assume that U = ug+ AeZ, where ug and ) are constants,
u*, v¥, and p* are functions of z and y near the equilibrium state ut = ug,

vE¥ =0, pt = —pty+pthand p~ = —p~y+ pTh, and possess asymptotic
expansions:
(ui) Uiapi) = (UO’ 07 _piy + p+h) + 6(uzlta ’Uitypit)
(1) +e¥(uy, vy, py) + €(ui, 05, p3) + O(e),
where v¥ = 0, and pf = —pty + pth. As was in [4], we substitute

the asymptotic expansions of u,v,p into the nondimensionalized Euler
equations and boundary conditions for the successive approximation of
the nondimensionalized Euler equations. Then, by solving this sequence
of equations, one can easily find pZ, vy, uf, pf, vy, ugt,p:f, v§t, uf in terms
of 7 with the assumption 7(—oc0) = 0 and can also derive the following

equation of 7,
UoTe — U1 + €(uy e — MUY, — V3)
(2) +€2 (uQ_T]:C + 7777mu1_yy772 + nUQ_y - 'US—) = 0(63)'

The critical speed u is obtained if zeroth order term of (2) vanishes.
Hence,

3) ug = h(1 = p)/(p+ h).
Then we put v, uf, vF, uF, and v into (2) to obtain the following

equation for 7,

3(1 = p)(p — h*)/(uo(p + R)*)z
(4) +€(A17]z + A2772T]z + Ag'f]z;,;z -+ A4bz) = 0(62),
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where
A = 2\,
Ay = 6p(1—p)(1+h)*/(uo(p+ h)*) >0,
Ay = —huo(1+ ph)/3(p+h) <0,
Ay = —(uo+1).

The nonlinear term 1, disappears if p equals the square of A and we obtain
the following forced modified KdV equation when p = h? by dropping the
higher order term of e,

(5) Nezz = a177277a: + asny + asby,

ar = 6p(1— p)(1+ h)*/(hug(p + h)*(1 + ph)/3) > 0,
az = 6A(p+ h)/(huo(1 + ph)),
az = —3(ug+1)(p+h)/(huo(l+p+h)) <0.

We note that if p # h? in (4), a KdV equation, which has been studied in
[7], can be derived.
Integrating (5) from —oo to z yields

(6) New = a11° /3 + apn + azb(z),
where
0 ifz<-R
b(z) = (1—z?/R?) if —~R<z2<0
1 ¢f 0< .

3. Homogeneous Solutions and Numerical Solutions

Since b(z) stands for step-shaped obstruction, we first look for the so-
lution of (6) when b(z) is a constant.
By multiplying 7, to both sides of (6) and integrating the resulting equa-
tion, we obtain

ef
(7) = a1n*/6 + agn? + 2a3n + ¢ & f(n).

Let ¢; < ¢ < ¢3 < ¢4 be four real zeros of f(n) = 0. Then the solutions of
(7) in this case should be larger than or equal to ¢, and less than or equal
to c3 since, otherwise, the right side of (7) becomes negative, and no real
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solution appears. We first consider the periodic solution of (7), which can
be expressed as

(8)  n= (eusn’(ea(z — o), k) — 03)/ (ausn®(0a(x — 20), k) — a5),

for co < n < c3, where

= (cs — c1)(cs — c2)/(ca — c2)(c3 — 1),
a; = 61(63 — CQ), Qg = 01(63 — CQ)/(6(63 — Cl))
Q3 = 02(03 - C1), G4 = C3 — C2, 5 = C3 — (1,

1/2
b
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and zg is a phase shift and sn(u, k) is a Jacobian Elliptic function. Since
sn(z,1) = tanhz, (8) has the following limiting solution as ¢; — c3;

(9) n=c, — E(c; — ¢;)/(tanh®(hM (z — 3)) — E),
where

E=(cs—c1)/(cs—c2) > 1, h=(c1/6)"?,
M? = (c3 — c1)(c1 — c2) /4

If c3 =0, 7 in (8) becomes, as ¢y — 0,

(10) n= —ClseChQ(%(ﬂ? - xo))/(tanhQ(az(x — Zo)) — &1/c2),
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Fig. 4: Branch Curve
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where again sn(z, 1) = tanhz has been used.

Next we consider the existence of the solution of (6) on [z7,z%] with
n(z~) = nz(z~) = 0. Define a complete metric space B = {f|f €
Clz™,z*]}, If]] = maxs-<o<qz+|f(z)| < M for some given positive con-
stant M. Then (6) can be converted to an integral equation and by using
contraction mapping theorem, one can easily show that the solution of (6)
exists for —\ sufficiently large (Ref. [4]).

Since we have shown the existence of solutions of (6) for (—oo,z7), [z7, 2]
and (z7,00) separately, we find the global solution of (6) numerically by
using matching process. Typical periodic cnoidal wave solution and hy-
draulic fall solution are given in Fig. 2 and 3 for p = 1/2 and branch curve
for hydraulic fall is given in Fig. 4.
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