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Abstract. This article deals with implementation of a high-order finite
difference scheme for numerical solution of the incompressible Navier-

Stokes equations on curvilinear grids. The numerical scheme is based on

pseudo-compressibility approach. A fifth-order upwind compact scheme
is used to approximate the inviscid fluxes while the discretization of met-

ric and viscous terms is accomplished using sixth-order central compact
scheme. An implicit Euler method is used for discretization of the pseudo-

time derivative to obtain the steady-state solution. The resulting block

tridiagonal matrix system is solved by approximate factorization based
alternating direction implicit scheme (AF-ADI) which consists of an alter-

nate sweep in each direction for every pseudo-time step. The convergence

and efficiency of the method are evaluated by solving some 2D benchmark
problems. Finally, computed results are compared with numerical results

in the literature and a good agreement is observed.

1. Introduction

The incompressible Navier-Stokes equations are fundamental equations in
fluid mechanics. The numerical study of these equations is very important due
to its various applications. Numerous computational methods have been de-
veloped and are still one of the central aspects of the research area known as
computational fluid dynamics (CFD). Increasing interest in high-performance
computing for problems acquiring high accuracy for a wide range of length
scales, such as large-eddy simulation and direct numerical simulation of tur-
bulence, high-order numerical methods become a major concern. The main
objective of this work is to develop a high-order finite difference scheme in
generalized curvilinear coordinates capable of treating a wider spectrum of
problems with non-uniform grids. In 2D Cartesian coordinates system with
(u, v) as the velocity field and p as the pressure, the non-dimensional form of
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incompressible Navier-Stokes equations are:

∂u

∂x
+
∂v

∂y
= 0,(1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2 +
∂2u

∂y2

)
,(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2 +
∂2v

∂y2

)
.(3)

Here Re is Reynolds number and defined as Re = ρv∞L
µ with v∞ being the

reference velocity, L the characteristic length, ρ the density and µ the dynamic
viscosity of the fluid. The continuity equation (1) lacks the pressure term which
makes it difficult to solve it implicitly. However, in the compressible Navier-
Stokes equations, the time dependent term in the mass conservation equation
allows to solve for the density directly, this gives motivation to develop methods
for incompressible flows based on compressible flow methods known as artificial
compressibility (or pseudo-compressibility) method [3, 4]. In this method, the
time derivative of pressure is added to the continuity equation that will not
only provide solution for p but also on convergence (reaching steady state), it
satisfies the mass conservation as well. The continuity equation is modified as;

(4)
∂p

∂τ
+ β

(
∂u

∂x
+
∂v

∂y

)
= 0,

where τ is pseudo-time or iteration parameter and β is the artificial compress-
ibility factor. The main advantage of this method is to use compressible flow
solver for numerical solution of incompressible flow. This method has a draw-
back that the artificial compressibility factor β may affect the convergence rate
of computation. It is difficult to give optimal value of this factor in advance.
However it can be found by numerical experiments on coarse grids before going
to solution on finer grids as shown in Figure 2(a).

2. Mathematical formulation and discretization schemes

2.1. Governing equations

The governing equations are transformed in generalized curvilinear coordi-
nates (ξ, η) using artificial compressibility term in conservative form and by
replacing t with τ in equations (2), (3) (see [19] and references therein)

(5)
∂D̂

∂τ
+
∂(Ĝ− Ĝv)

∂ξ
+
∂(Ĥ− Ĥv)

∂η
= 0,

where D̂ = D
J = 1

J

(
p
u
v

)
is solution vector, J being Jacobian of transformation.

Ĝ and Ĥ are inviscid flux vectors while Ĝv and Ĥv viscous flux vectors and
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are given

Ĝ =
1

J

 βU
uU + ξxp
vU + ξyp

 , Ĥ =
1

J

 βV
uV + ηxp
vV + ηyp

 ,

Ĝv =
1

ReJ

 0(
ξ2
x + ξ2

y

)
uξ + (ξxηx + ξyηy)uη(

ξ2
x + ξ2

y

)
vξ + (ξxηx + ξyηy) vη

 ,
Ĥv =

1

ReJ

 0
(ξxηx + ξyηy)uξ +

(
η2
x + η2

y

)
uη

(ξxηx + ξyηy) vξ +
(
η2
x + η2

y

)
vη

 .
The contravariant velocity vectors are U and V in their respective curvilinear
directions, and are given as

U = ξxu+ ξyv,

V = ηxu+ ηyv.

The terms involving the geometry of the grids, such as ξx, ξy, ηx, ηy are called
metrics. The inviscid flux vector in any direction can be uniformly written as

(6)

k̂xG + k̂yH = Ĝk

k̂x

 βu
u2 + p
vu

+ k̂y

 βv
uv

v2 + p

 =

 βα

uα+ k̂xp

vα+ k̂yp

 ,

where α = k̂xu+ k̂yv, (k̂x, k̂y) = (kx, ky)/J , k = ξ, η.
The Jacobian matrix of the inviscid flux vector is:

(7) Âk =
∂Ĝk

∂D
=

 0 k̂xβ k̂yβ

k̂x k̂xu+ α k̂yu

k̂y k̂xv k̂yv + α

 ,

which can be diagonalized as

(8) Âk = TkΛkT
−1
k ,

with eigenvalue matrix Λk = diag(λ+ %, λ, λ− %), where % is the pseudo-speed
of sound given by

% =
√
λ2 + β(k̂2

x + k̂2
y).

The right and left eigenvector matrices are Tk and T−1
k respectively. The

hyperbolic nature of the artificial compressibility formulation provides basis
for the development of upwind schemes.
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2.2. Discretization of convective terms

The convective terms in the incompressible Navier-Stokes equations are first
split in the positive and negative flux depending upon the sign of eigenvalues
of the flux Jacobian. For example in ξ direction,

(9) Ĝξ = Ĝ+
ξ + Ĝ−ξ ,

where Ĝ+
ξ corresponds to the information being propagated by the positive

eigenvalues in the positive direction where as Ĝ−ξ corresponds to the informa-
tion being propagated by the negative eigenvalues in the negative direction.
To evaluate the values of the derivatives in Eq. (9), the following fifth-order
upwind compact scheme [7,8] at interior points is used:

at i = 3 :

3

5
[Ĝ+

ξ ]i +
2

5
[Ĝ+

ξ ]i−1 =
−∆−Ĝ+

i+2 + 11∆−Ĝ+
i+1 + 47∆−Ĝ+

i + 3∆−Ĝ+
i−1

60∆ξ
,(10a)

at i = N − 2 :

3

5
[Ĝ−ξ ]i +

2

5
[Ĝ−x ]i+1 =

−∆+Ĝ−i−2 + 11∆+Ĝ−i−1 + 47∆+Ĝ−i + 3∆+Ĝ−i+1

60∆ξ
,(10b)

respectively, where ∆−Ĝi = Ĝi − Ĝi−1 and ∆+Ĝi = Ĝi+1 − Ĝi.
The difference of grid is ∆ξ in the computational space. From equation (6),

the difference in flux between two neighboring points in ξ direction is

Ĝi+1 − Ĝi =
(
ξ̂xG + ξ̂yH

)
i+1
−
(
ξ̂xG + ξ̂yH

)
i

=
(
ξx 4G + ξy 4H

)
+ G4 ξ̂x + H4 ξ̂y

=
(
ξxAξ(D)4D + ξyAη(D)4D

)
i
+ G4 ξ̂x + H4 ξ̂y(11)

= A±
i+ 1

2

(D)4D + G4 ξ̂x + H4 ξ̂y,

where G and H be the arithmetic average of inviscid fluxes in cartesian coor-
dinates G and H respectively between points i and i+ 1, 4 be the difference
between points i and i + 1. The remaining two terms in first line of equa-
tion (11) shows the influence of varying grids. The Jacobian matrix in split

form is given by Â±
i+ 1

2

(D) = TAΛ±AT−1
A , with Λ±A = 1

2 (ΛA ± |ΛA|), which

is evaluated using arithmetic means of the flow variables as well as metrics
between two consecutive grid points [17];

D =
1

2
(Di +Di+1) ;

(
ξx, ξy

)
=

1

2

((
ξ̂x, ξ̂y

)
i
+
(
ξ̂x, ξ̂y

)
i+1

)
.

An explicit fourth-order one sided scheme [21] is used for the points next to
boundary, i.e.,

at i = 2 :
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[
Ĝ+
ξ

]
i

=
−3Ĝ+

i−1 − 10Ĝ+
i + 18Ĝ+

i+1 − 6Ĝ+
i+2 + Ĝ+

i+3

12∆ξ

=
3∆Ĝ+

i− 1
2

+ 13∆Ĝ+
i+ 1

2

− 5∆Ĝ+
i+ 3

2

+ ∆Ĝ+
i+ 5

2

12∆ξ
(12a)

at i = N − 1 :[
Ĝ−ξ

]
i

=
3Ĝ−i+1 + 10Ĝ−i − 18Ĝ−i−1 + 6Ĝ−i−2 − Ĝ−i−3

12∆ξ

=
3∆Ĝ−

i+ 1
2

+ 13∆Ĝ−
i− 1

2

− 5∆Ĝ−
i− 3

2

+ ∆Ĝ−
i− 5

2

12∆ξ
.(12b)

2.3. Discretization of metric and viscous terms

Computation of the Jacobian matrices require the calculations of first deriva-
tives of x and y with respect to computational coordinates ξ and η. These
first-order derivatives can be approximated with sixth-order central compact
scheme [13];

1

3
ψ′i−1 + ψ′i +

1

3
ψ′i+1 =

14

9

ψi+1 − ψi−1

2∆ξ
+

1

9

ψi+2 − ψi−2

4∆ξ
,(13)

which requires the solution of a tridiagonal system of equations. A fourth-
order two sided compact scheme is used for the points near boundary, and a
fourth-order upwind compact scheme [13] is used for the points on boundary
respectively:

at i = 2 and N − 1 :
1

4
ψ′i−1 + ψ′i +

1

4
ψ′i+1 =

3

2

ψi+1 − ψi−1

2∆ξ
,(14a)

at i = 1 : 6ψ′1 + 18ψ′2 =
−17ψ1 + 9ψ2 + 9ψ3 − ψ4

∆ξ
,(14b)

at i = N : 6ψ′N + 18ψ′N−1 =
17ψN − 9ψN−1 − 9ψN−2 + ψN−3

∆ξ
.(14c)

Since the discretization of second-order derivative has higher resolution than
that of first-order derivatives. Therefore, central compact scheme for viscous
terms is used. Also computation reduces to half if non-orthogonal grid is
used for the second and mixed derivatives in viscous terms like ∂ξ (g∂ξψ) and
∂ξ (g∂ηψ). First, we expand second derivatives and mixed derivatives as follows

∂ξ (g∂ξψ) = (∂ξg) (∂ξψ) + g (∂ξξψ) ,(15a)

∂ξ (g∂ηψ) = (∂ξg) (∂ηψ) + g (∂ξ (∂ηψ)) ,(15b)

then compute all the first derivatives in the RHS of equation (15a) and equa-
tion (15b) using the fourth-order central compact scheme for metric terms as
given in subsection (2.3). The second-order derivative ∂ξξψ is computed with
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following sixth-order central compact scheme [13];

(16)

2ψ′′i−1 + 11ψ′′i + 2ψ′′i+1

= 12
ψi−1 − 2ψi + ψi+1

∆ξ2
+

3

4

ψi−2 − 2ψi + ψi+2

∆ξ2
, 3 ≤ i ≤ N − 2.

This system of tridiagonal equations needs to be closed at boundaries, a
diagonally dominant third-order compact scheme next to boundary points are
used

ψ′′i − ψ′′i+1 =
ψi−1 − 3ψi + 3ψi+1 − ψi+2

∆ξ2
, i = 2,(17a)

ψ′′i − ψ′′i−1 =
ψi+1 − 3ψi + 3ψi−1 − ψi−2

∆ξ2
, i = N − 1.(17b)

3. Solution of algebraic systems

The solution algorithm of the artificial compressibility formulation can be
borrowed from those used for compressible flow computation. In this paper, the
approximate factorization based alternate direction implicit scheme (AF-ADI)
is used [2]. The details of the solution algorithm and its implementation can
be found in [19]. The scheme is given as follows:[

I + ∆τJ
(
5ξÂξ

+
+4ξÂ−ξ − δξγξImδξ

)]
×
[
I + ∆τJ

(
5ηÂη

+
+4ηÂη

−
− δηγηImδη

)]
∆Dm = −Rm,(18)

where δ±ξ φi = ±(φi±1−φi)
∆ξ , δξγkδξφi =

γki+1/2
(φi+1−φi)−γki−1/2

(φi−φi−1)

∆ξ2 .

To obtain the solution, we need to solve a block-tridiagonal equations in
each directions. To simplify further, the split Jacobian matrices of the flux
vectors in the LHS of above equation are approximately constructed by

(19) Â± =
1

2

[
Â± ρ(Â)I

]
,

where

ρ(Â) = κmax
[∣∣∣λ(Â)

∣∣∣] ,
where λ(Â) represents the eigenvalues of the matrix Â, and κ is a constant
that is greater than or equal to unity and we have used κ ≈ 1.2 to get the
stable solution [18].

4. Accuracy and convergence test: Kovasznay flow

The Kovasznay flow incorporates nonlinear effects and is therefore a good
test for the accuracy of incompressible Navier-Stokes solvers [6, 12, 20]. In the
domain [−0.5× 0.5]× [−0.5× 0.5], the analytical solution has the form:

u = 1− eλx cos 2πy,
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v =
λ

2π
eλx sin 2πy,

p =
1

2
(1− e2λx),

where λ = Re
2 −

√(
Re2

4 + 4π2
)

. Dirichlet boundary conditions are specified

using the exact solution. The stretching grids in the x-direction are generated
using the transformation ξ = ln(x + 1), η = y with inverse transformation of
the form x = eξ − 1, y = η. The iterations are continued until the residual
drop to 10−12 as shown in Figures 2(a), (b). The stretching grids and stream-
lines contours for the steady solution corresponding to Re = 40 are shown in
Figures 1(a) and (b) respectively.

X

Y

X

Y

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Figure 1. (a) Stretching grids, (b) Streamlines contours for
the steady solution corresponding to Re = 40.

Table 1 shows the grid refinement study and accuracy analysis of the pro-
posed scheme for Re = 40 and Re = 100. The high-order accuracy (nearly 5.0)
is confirmed for the both velocity components and the pressure. The possible
reason for not exactly 5.0 is the use of low-order schemes at the boundary. The
order of accuracy OA is calculated using the formula

OA =
ln (e2/e1)

ln 2.0

with

e1 = ‖φe − φf‖2 , e2 = ‖φe − φc‖2 ,
where φe, φf and φc stands for the exact solution, the solution on a fine grid
and the solution on a coarser grid with half of the points in all directions
respectively.

Figure 2(a) shows convergence history of the scheme at Re = 40 for different
value of β = 1, 10, 100, 500. It can be seen that optimal convergence can be
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Table 1. Errors and orders of accuracy using the proposed
scheme for the Kovasznay flow.

Re = 40 u-velocity v-velocity pressure
Mesh size L2 error Order u L2 error Order v L2 error Order p
21× 21 5.53× 10−5 − 1.89× 10−5 − 3.43× 10−4 −
41× 41 2.52× 10−6 4.46 6.95× 10−7 4. 77 1.30× 10−5 4. 72
81× 81 9.85× 10−8 4.68 1.81× 10−8 5. 26 4.77× 10−7 4. 77
161× 161 4.21× 10−9 4. 55 7.14× 10−10 4. 66 1.94× 10−8 4. 62
321× 321 1.05× 10−10 4. 76 2.34× 10−11 4. 93 6.86× 10−10 4. 82
Re = 100 - - -
21× 21 3.70× 10−5 − 7.18× 10−6 − 1.06× 10−4 −
41× 41 1.83× 10−6 4. 34 3.24× 10−7 4. 47 3.97× 10−6 4. 74
81× 81 7.74× 10−8 4. 56 8.25× 10−9 5. 30 1.43× 10−7 4. 80
161× 161 3.40× 10−9 4. 51 2.24× 10−10 5. 20 5.27× 10−9 4. 76
321× 321 1.40× 10−10 4. 60 6.76× 10−12 5. 05 2.12× 10−10 4. 64

achieved with β = 10 having error less the 10−12. The nice thing about this
solution is its existence for any Reynolds number as shown in Figure 2(b).
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Figure 2. Convergence history (a) at fixed Re = 40 with
different values of β and (b) at fixed β = 10 with different
value of Re.

5. Numerical results

In this section, three benchmark problems like (i) 2D lid driven cavity flow
with geometrical variations, (ii) flow in a channel with sinusoidal walls, and
(iii) flow around an airfoil are solved numerically. Computations have been
done on a sequential HP ProBook with processor Intel Core Duo at frequency
2.10GHz.
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5.1. 2D lid driven cavity flow

This subsection is based upon the flow inside a lid driven cavity with varia-
tion of angles and boundary conditions. First problem is the classical lid driven
cavity, the second problem is given with change of angles, and third and fourth
problem is formulated with the change of boundary conditions. Comparison
with reference results is provided for validation of the scheme.

5.1.1. Classical lid driven cavity flow. In this problem, the flow is given by
moving the top boundary while no slip boundary conditions are applied on
other solid walls. On the top wall (y = 1.0), boundary conditions are u = u(x),
v = 0 and p is computed from the y momentum equation py = 1

Revyy imposed
at the upper wall. Zero initial conditions are used for all variables. To avoid
singularity at the top corners, the following hyperbolic tangent u-velocity on
the top wall is used:

u (x) =

{
tanh (100x) , 0 ≤ x ≤ 0.5,

− tanh (100(x− 1)) , 0.5 < x ≤ 1.

We use 81× 81 non-uniform grid which is clustered towards the walls using
the stretching function xi = i

imax
− θ

2π sin[ 2πi
imax

], 0 < θ ≤ 1 in both x- and

y-directions [11]. In Fig. 3(a), the computational domain while in Fig. 3(b)
the streamline contours are presented for the Reynolds number Re = 5000.
It clearly shows the ability of the method to predict all the three (primary,
secondary and tertiary) vortices correctly.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3. 2D lid driven cavity problem (a) Computational
grid for θ = 0.6 (b) Computed streamlines corresponding to
Re = 5000.

The comparisons of computed velocity components with the benchmark so-
lution [9] for the Re = 100 and Re = 5000 are given in Figure 4. We can see
that both the results match very well.
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Figure 4. u and v-velocity components of velocity for Re =
100 and Re = 5000 compared with that of Ghia et al. [9].

5.1.2. Flow inside skewed cavity. Next, the flow inside a skewed cavity with
the skew angle between 15◦ < α < 165◦ with an increment of 15◦ is simulated.
The grids are generated in such a way that the physical domain is mapped with
the unit computational domain using the following transformation [15];

ξ = x− y cotα,(20)

η = y sinα.(21)

This transformation maps the non-uniform skewed cavity with the skew angle
α to a uniform computational plane (ξ, η), that is directly dependant on skew
angle α. The variation of α enforces us to modify the values of (ξ, η) as the
computational plane is always equal to unit square. Since the mapping is one-
one so the inverse transformation is given by:

x = ξ + η cosα,(22)

y = η sinα.(23)

The computed results are compared with the results given in [5] and are
shown in Figure 5(a-b) for skew angle 30◦ and Figure 6(a-b) for skew angle
45◦. A good agreement is observed with the reference solution. Furthermore,
the comparison of results using angles 60◦, 75◦, 105◦ and 150◦ respectively are
illustrated in Figure 7(a-b) and Figure 8(a-b) for Reynolds number 1000.

5.1.3. Flow in two sided cavity. In this subsection, the square cavity is driven
such that the top and bottom walls are moving in parallel and in anti-parallel
directions with fixed velocities. The streamlines pattern for parallel and anti
parallel walls are respectively shown in Figure 9(a) and Figure 9(b). It is
observed that parallel wall motion produces two vertices whereas the anti-
parallel walls motion produces only one vertex.
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Figure 5. Comparison of normalized velocity u along y with
Ref. [5] for skew angle α = 30◦ using grids size 101 × 101 (a)
Re = 100 (b) Re = 1000.
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Figure 6. Comparison of normalized velocity u along y with
Ref. [5] for skew angle 45◦ (a) Re = 100 (b) Re = 1000.

The normalized velocity u = u(y) in square cavity along parallel and anti-
parallel directions are compared with Ref. [16] results and a good agreement is
observed which is shown in Figure 10(a-b).

5.1.4. Flow in a four sided cavity. Finally, the flow inside a cavity with four
sides moving with following velocities

u = 0, v = 1 at left boundary, u = 0, v = −1 at right boundary and

u = 1, v = 0 at top boundary, u = −1, v = 0 at bottom boundary.
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Figure 7. Comparison of normalized velocity u along y with
Ref. [5] using Re = 1000 for skew angles (a) α = 60◦ (b)
α = 75◦.

u

y

0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Present

Erturk

u

y

0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Present

Erturk

Figure 8. Comparison of normalized velocity u along y with
Ref. [5] using Re = 1000 for skew angles (a) α = 105◦ (b)
α = 150◦.

is studied. The streamlines pattern is illustrated in Figure 11(a) for grids
101×101 while comparison of u velocity versus y with the reference solution [1]
is given in Figure 11(b) with Reynolds number 100. We see that the comparison
agree well.

5.2. Flow in a sinusoidal channel

The second problem for testing the efficiency of the scheme is the flow in a
symmetric channel with sinusoidal walls as shown in Figure 12.
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Figure 9. Streamline pattern for the two sided cavity flow
(a) Parallel wall motion (b) Antiparallel wall motion.
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Figure 10. Comparison of normalized velocity u vs y for
two sided lid driven cavity flow at Re = 100 compared with
Ref. [16]. (a) parallel (b) anti-parallel.

The grid are generated using the transformation x = ξ and y = η(1− εcosξ)
with ε as wall amplitude. At the inlet u = 3

2 (1 − y2) and v = 0 while p is

extrapolated using the interior mesh points. At the outlet boundary ∂u
∂x = 0

and ∂v
∂x = 0 while pressure is taken to be zero. On the upper stationary wall,

no slip boundary condition is applied for velocity and zero normal pressure is
applied whereas uy = 0, py = 0 and v = 0 are used at the central line. The
formation of vortices depends mainly upon the viscosity and hence on Reynolds
number Re and on perturbation parameter ε. We simulated the problem for
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Figure 11. Flow inside four sided cavity at Re = 100. (a)
Streamlines for four sided cavity (b) Plot of normalized u ver-
sus y compared with Ref. [1].

Figure 12. Geometry of the channel

different Re and different ε but presented only the case with ε = 0.2 and
Re = 400 for comparison purpose with the numerical result [14]. We see that
the qualitative comparison is very good as shown in Figure 13.

5.3. Viscous flow around an airfoil

In this problem we simulate the viscous flow over a NACA-0012 airfoil of
unit chord length c at 0◦ angle of attack. The computational plane is O-type
nonuniform grids clustered near the airfoil. The computational domain is big
enough [−10, 10], so that the outer boundary is governed by freestream condi-
tions. A unit inflow velocity is used on the lateral and circular boundaries of
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Figure 13. Comparison of the stream lines [LHS [14] and
RHS present] with ε = 0.2 and Re = 400 presenting the sepa-
ration regions for the flow field.

airfoil. The periodic boundary conditions are specified in the span-wise direc-
tion. It is useful to cluster of the grid lines near the airfoil surface and in the
wake downstream, where the flow-properties (like velocity) have high gradients.
Clustering of gridlines in these areas allow to tackle the high gradients without
having to highly resolve the whole domain as shown in the Figure 14(a) and
Figure 14(b). We have used 129× 65 O-type grid given in Figure 14(b) for the
present calculations. Very slow convergence is observed for the grids given in
Figure 14(a).

Figure 14. Computational grid around an airfoil (a) unclus-
tered in the wake downstream (b) clustered in the wake down-
stream.

Figure 15(a) shows a close view of the grid so that we can see the airfoil
geometry clearly. To compare with available data, we solve the problem for
Re = 2.8 × 106 and different values of β. Pressure contours around the airfoil
is shown Figure 15(b).
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Figure 15. Flow past an airfoil (a) closed view of grid 14(b)
and (b) computed pressure contours.

In Figure 16, the computed surface pressure distribution for grids 14(a) and
14(b) are compared with the reference approximate digitized data of Gregory
and Reilly [10]. A good agreement is observed for grids 14(b), however, there
is some deviation for grids 14(a). This test problem shows the proposed model
is accurate and flexible and the formulation is also applicable to complex flows.
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0.4

Grids 14(a)
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Gregory & O’Reilly [Ref. 10]
Geometry of NACA 0012

Figure 16. Comparison of surface pressure coefficients at
Re = 2.88× 106.

6. Conclusions

A high-order upwind compact finite difference scheme in the generalized
coordinate system is developed for the solution of 2D incompressible Navier-
Stokes equations using artificial compressibility method. Both Dirichlet and
Neumann boundary conditions are easily incorporated into the numerical
scheme. Convergence and high-order of accuracy are verified using a test prob-
lem having an exact solution. To bring out the advantage of the scheme, we
use it for computing several benchmark problems on non-uniform grids. The
results obtained for these test cases on relatively coarser grids are compared
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with existing numerical results. The scheme is high-order accurate and capable
of handling problems with complex geometries using non-uniform grids.
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