• Title/Summary/Keyword: statistical manifolds

Search Result 15, Processing Time 0.021 seconds

SOME PROPERTIES OF CRITICAL POINT EQUATIONS METRICS ON THE STATISTICAL MANIFOLDS

  • Hajar Ghahremani-Gol;Mohammad Amin Sedghi
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.471-478
    • /
    • 2024
  • The aim of this paper is to investigate some properties of the critical points equations on the statistical manifolds. We obtain some geometric equations on the statistical manifolds which admit critical point equations. We give a relation only between potential function and difference tensor for a CPE metric on the statistical manifolds to be Einstein.

A NOTE ON STATISTICAL MANIFOLDS WITH TORSION

  • Hwajeong Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.621-628
    • /
    • 2023
  • Given a linear connection ∇ and its dual connection ∇*, we discuss the situation where ∇ + ∇* = 0. We also discuss statistical manifolds with torsion and give new examples of some type for linear connections inducing the statistical manifolds with non-zero torsion.

CURVATURES OF SEMI-SYMMETRIC METRIC CONNECTIONS ON STATISTICAL MANIFOLDS

  • Balgeshir, Mohammad Bagher Kazemi;Salahvarzi, Shiva
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.149-164
    • /
    • 2021
  • By using a statistical connection, we define a semi-symmetric metric connection on statistical manifolds and study the geometry of these manifolds and their submanifolds. We show the symmetry properties of the curvature tensor with respect to the semi-symmetric metric connections. Also, we prove the induced connection on a submanifold with respect to a semi-symmetric metric connection is a semi-symmetric metric connection and the second fundamental form coincides with the second fundamental form of the Levi-Civita connection. Furthermore, we obtain the Gauss, Codazzi and Ricci equations with respect to the new connection. Finally, we construct non-trivial examples of statistical manifolds admitting a semi-symmetric metric connection.

SASAKIAN STATISTICAL MANIFOLDS WITH QSM-CONNECTION AND THEIR SUBMANIFOLDS

  • Sema Kazan
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.471-490
    • /
    • 2023
  • In this present paper, we study QSM-connection (quarter-symmetric metric connection) on Sasakian statistical manifolds. Firstly, we express the relation between the QSM-connection ${\tilde{\nabla}}$ and the torsion-free connection ∇ and obtain the relation between the curvature tensors ${\tilde{R}}$ of ${\tilde{\nabla}}$ and R of ∇. After then we obtain these relations for ${\tilde{\nabla}}$ and the dual connection ∇* of ∇. Also, we give the relations between the curvature tensor ${\tilde{R}}$ of QSM-connection ${\tilde{\nabla}}$ and the curvature tensors R and R* of the connections ∇ and ∇* on Sasakian statistical manifolds. We obtain the relations between the Ricci tensor of QSM-connection ${\tilde{\nabla}}$ and the Ricci tensors of the connections ∇ and ∇*. After these, we construct an example of a 3-dimensional Sasakian manifold admitting the QSM-connection in order to verify our results. Finally, we study the submanifolds with the induced connection with respect to QSM-connection of statistical manifolds.

CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

  • Furuhata, Hitoshi;Hasegawa, Izumi;Satoh, Naoto
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.851-864
    • /
    • 2022
  • We define a kind of sectional curvature and 𝛿-invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the 𝛿-invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

VECTORIAL LINEAR CONNECTIONS

  • Hwajeong Kim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.163-169
    • /
    • 2023
  • In this article, we consider a vectorial linear connection which is determined by three fixed vector fields. Classifying these vectorial connections, we obtain a new type of generalized statistical manifolds which allow non-zero torsion.

MEAN DISTANCE OF BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.45-48
    • /
    • 2002
  • Consider the mean distance of Brownian motion on Riemannian manifolds. We obtain the first three terms of the asymptotic expansion of the mean distance by means of Stochastic Differential Equation(SDE) for Brownian motion on Riemannian manifold. This method proves to be much simpler for further expansion than the methods developed by Liao and Zheng(1995). Our expansion gives the same characterizations as the mean exit time from a small geodesic ball with regard to Euclidean space and the rank 1 symmetric spaces.

  • PDF

THE EXPANSION OF MEAN DISTANCE OF BROWNIAN MOTION ON RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.37-42
    • /
    • 2003
  • We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.

  • PDF