• 제목/요약/키워드: statistical estimator

검색결과 798건 처리시간 0.024초

SOME PROPERTIES OF SIMEX ESTIMATOR IN PARTIALLY LINEAR MEASUREMENT ERROR MODEL

  • Meeseon Jeong;Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.85-92
    • /
    • 2003
  • We consider the partially linear model E(Y) : X$^{t}$ $\beta$+η(Z) when the X's are measured with additive error. The semiparametric likelihood estimation ignoring the measurement error gives inconsistent estimator for both $\beta$ and η(.). In this paper we suggest the SIMEX estimator for f to correct the bias induced by measurement error, and explore its properties. We show that the rational linear extrapolant is proper in extrapolation step in the sense that the SIMEX method under this extrapolant gives consistent estimator It is also shown that the SIMEX estimator is asymptotically equivalent to the semiparametric version of the usual parametric correction for attenuation suggested by Liang et al. (1999) A simulation study is given to compare two variance estimating methods for SIMEX estimator.

A Feasible Two-Step Estimator for Seasonal Cointegration

  • Seong, Byeong-Chan
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.411-420
    • /
    • 2008
  • This paper considers a feasible two-step estimator for seasonal cointegration as the extension of $Br{\ddot{u}}ggeman$ and $L{\ddot{u}}tkepohl$ (2005). It is shown that the reducedrank maximum likelihood(ML) estimator for seasonal cointegration can still produce occasional outliers as that for non-seasonal cointegration even though the sizes of them are not extreme as those in non-seasonal cointegration. The ML estimator(MLE) is compared with the two-step estimator in a small Monte Carlo simulation study and we find that the two-step estimator can be an attractive alternative to the MLE, especially, in a small sample.

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data

  • Sharma, Vikas Kumar;Singh, Sanjay Kumar;Singh, Umesh
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.193-209
    • /
    • 2017
  • The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.

Interval Estimation of the Difference of two Population Proportions using Pooled Estimator

  • Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.389-399
    • /
    • 2002
  • In order to examine whether the difference between two point estimates of population proportions is statistically significant, data analysts use two techniques. The first is to explore the overlap between two associated confidence intervals. Second method is to test the significance which is introduced at most statistical textbooks under the common assumptions of consistency, asymptotic normality, and asymptotic independence of the estimates. Under the null hypothesis which is two population proportions are equal, the pooled estimator of population proportion is preferred as a point estimator since two independent random samples are considered to be collected from one population. Hence as an alternative method, we could obtain another confidence interval of the difference of the population proportions with using the pooled estimate. We conclude that, among three methods, the overlapped method is under-estimated, and the difference of the population proportions method is over-estimated on the basis of the proposed method.

A Note on Deconvolution Estimators when Measurement Errors are Normal

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.517-526
    • /
    • 2012
  • In this paper a support vector method is proposed for use when the sample observations are contaminated by a normally distributed measurement error. The performance of deconvolution density estimators based on the support vector method is explored and compared with kernel density estimators by means of a simulation study. An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.

Model-Based Prediction of the Population Proportion and Distribution Function Using a Logistic Regression

  • Park, Min-Gue
    • Communications for Statistical Applications and Methods
    • /
    • 제15권5호
    • /
    • pp.783-791
    • /
    • 2008
  • Estimation procedure of the finite population proportion and distribution function is considered. Based on a logistic regression model, an approximately model- optimal estimator is defined and conditions for the estimator to be design-consistent are given. Simulation study shows that the model-optimal design-consistent estimator defined under a logistic regression model performs well in estimating the finite population distribution function.

A Cointegration Test Based on Weighted Symmetric Estimator

  • Son Bu-Il;Shin Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.797-805
    • /
    • 2005
  • Multivariate unit root tests for the VAR(p) model have been commonly used in time series analysis. Several unit root tests were developed and recently Shin(2004) suggested a cointegration test based on weighted symmetric estimator. In this paper, we suggest a multivariate unit root test statistic based on the weighted symmetric estimator. Using a small simulation study, we compare the powers of the new test statistic with the statistics suggested in Shin(2004) and Fuller(1996).

Sequential Estimation in Exponential Distribution

  • Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.309-316
    • /
    • 2007
  • In this paper, we decompose the whole likelihood based on grouped data into conditional likelihoods and study the approximate contribution of additional inspection to the efficiency. We also combine the conditional maximum likelihood estimators to construct an approximate maximum likelihood estimator. For an exponential distribution, we see that a large inspection size does not increase the efficiency much if the failure rate is small, and the maximum likelihood estimator can be approximated with a linear function of inspection times.

A Study on Bandwith Selection Based on ASE for Nonparametric Regression Estimator

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • 제30권1호
    • /
    • pp.21-30
    • /
    • 2001
  • Suppose we observe a set of data (X$_1$,Y$_1$(, …, (X$_{n}$,Y$_{n}$) and use the Nadaraya-Watson regression estimator to estimate m(x)=E(Y│X=x). in this article bandwidth selection problem for the Nadaraya-Watson regression estimator is investigated. In particular cross validation method based on average square error(ASE) is considered. Theoretical results here include a central limit theorem that quantifies convergence rates of the bandwidth selector.tor.

  • PDF