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Sequential Estimation in Exponential Distribution*
Sangun Park?

Abstract

In this paper, we decompose the whole likelihood based on grouped data
into conditional likelihoods and study the approximate contribution of ad-
ditional inspection to the efficiency. We also combine the conditional maxi-
mum likelihood estimators to construct an approximate maximum likelihood
estimator. For an exponential distribution, we see that a large inspection
size does not increase the efficiency much if the failure rate is small, and the
maximum likelihood estimator can be approximated with a linear function
of inspection times.

Keywords: Conditional likelihood; Fisher information; life testing; maximum likelihood

estimator; order statistics.

1. Introduction

Many lifetime experiments employ the intermittent inspection scheme rather
than the continuous one for its convenience and saving costs. The data from this
intermittent inspection contain only the numbers of failures in each inspection
interval, and are called grouped data or quantal response data.

In this paper, we decompose the whole likelihood of grouped data into con-
ditional likelihoods, which enables us to study the approximate contribution of
additional inspection to the efficiency. Moreover, the decomposition of likelihoods
also enables us to get an approximate maximum likelihood estimator since each
conditional maximum likelihood estimator can be linearly combined.

For the mean of the exponential distribution, we see that the information ob-
tained with additional inspection is close to the number of failures in additional

* This work was supported in part by the Yonsei University College of Business and
Economics Research Fund.

1) Professor, Department of Applied Statistics, Yonsei University, Shinchon Dong 134,
Seoul 120-749, Korea.
E-mail : sangun@yonsei.ac.kr



310 Sangun Park

inspection interval and a large inspection size does not increase the efficiency
much if the proportion of total failures is low. In estimating the mean of the
exponential distribution based on these grouped data, the maximum likelihood
estimator is the natural choice but does not have a closed form solution. There-
fore, several approximate maximum likelihood estimators of closed form have
been proposed and discussed by some authors including (Tallis, 1967; Kendell
and Anderson, 1971; Seo and Yum, 1993). We provide another approximate
maximum likelihood estimator, which is a linear function of inspection times.

2. Decomposition of Likelihood and Conditional Maximum
Likelihood Estimator

Suppose that f; < --- < t are the inspection times and z; failures are ob-
served in (t;_1,t;]. Then we have grouped data (x1,z2,...,%k41) from k inter-
mittent inspection. The likelihood based on these grouped data can be written
as follows:

k+1
L(#;ty,... bt 0<H (t:;0) — F(ti—1;6))%, (2.1)

where £ty = 0 and t; 1 = co.
We first note that (1) can be decomposed into conditional likelihoods as

L(0;t1,...,t,) = L(6;t1) x L(6;ta]t1) x - -+ x L(O; tg|te—1),

where

)ni—xi

L(0; tifti-1) <F(t{;f)p_(ti7_(f;;;6)> i(ll—_FI;t(it_i;l;e)e)

and n; = Z;‘;l zj.

We denote Iy, () to be the Fisher information in the conditional likelihood,
L(#;ti|t;-1), which can be written as

2
t; F, (zi —niFye,_,)
I g / / Bt S ftioatdti1dt;,
tifti— 1 ( Fti}ti—l( Fti|t¢-—1) ot l

where Fl,_, = (F(t::0) = F(tie130))/(1 ~ F(ti-1;0)).
Thus we can study the contribution of additional inspection to the efficiency with
Itilti_l (0)




Sequential Estimation in Exponential Distribution 311

This exact Fisher information is difficult to obtain in most cases, and can be
approximated with the asymptotic information in z;/n;th sample quantile (Zheng
and Gastwirth, 2000),

] (%Eilti_l)z
Z:L'i/ni(]. — xz/m) ’

where t; can be approximated with F~1(1 — n;41/n1;9).

If we denote HAWZ._I to be the maximum likelihood estimator of the conditional
likelihood, L(8;t;|t;—1), we have k conditional maximum likelihood estimators.
In view of Park (1996), we can combine étim_l’s, i =1,...,k, to produce an

L, (0) =n (2.2)

estimator as

Tty (0)
= E ) 2.
0k It1 tk 0 t2|tl—1’ ( 3)

where I, , (9) is the Fisher information about 8 in L(0;;[t;—1) and Iy,..4,(0) =
Z?:l Iti|ti..1 (0)

If the exact Fisher information is not available, we can use the asymptotic Fisher
information.

3. Decomposition in Exponential Distribution

For an exponential distribution, f(z;8) = exp(—z/0)/0, the conditional like-
lihood, L(6;t;|t;—1), can be written as

i — b “ t; — ti— T
L(g;ti|ti_1) = (1 — exp (._%)) <exp (_ ; 1)) ,

and the asymptotic Fisher information in the conditional likelihood can be ob-
tained in view of (2) as

Iju_,(0) = E (<% log L(9; ti|ti_1))2)

. in n; —¥; o n; —x; 2
N 92 ¢ xT; & n; ’

If 41 (number of survivals) is relatively large so that z;/n;,¢ = 1,...,k is

small, the above decomposition tells us two interesting facts: The first one is that
I, (0) = z;/6%. For example, Ip,;;, ,(0) = 0.9609x;/6* even for z;/n; = 0.5.
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Thus we can see that additional information obtained by observing detailed failure
times is not so much (see, Gersbakh, 1995; Park, 2003; Park and Kim, 2006). The
second one is that Iy,...., (6) = Zle x;/6%, the number of total failures. Thus the
total information does not increase much, though we increase the inspection size
k with fixed t; since fixed t; gives the same number of total failures. We can
also easily understand the fact in Shapiro and Gulati (1996) that an experiment
even as few as three intervals (two inspections) does not result in a large loss of
information.

For the exponential distribution, éti|ti—1 can be obtained in a closed form
as (t; — ti—1)/log(ni/(n; — x;)). We note that there is no maximum likelihood
solution if z; = 0. Then we can combine the conditional maximum likelihood
estimators to have an estimator in view of (3) as

k
) 1 n, —I; n;
¢ i L i — ti—1). .
f 921t1...tk(0);” ( i ) 0g (n_m) (t: — ti-1) (3.1)

We can approximate n;((n; — ;)/x;) log(ni/(n; — x;)) in (4) to be n; for x; =0
since ((n; — x;)/z;) log(n;/(n; — x;)) — 1 as ; — 0. In a similar way, we can
approximate n;((n; — ;) /z;) log(n;/(ni — z;)) to be 0 for n; = z;.

We can also express 0 as a linear combination of ¢;’s as follows:

where

T — T n Mis] — Titl N1
w; =n; | — ) log ¢ — nit1 Dol 7 Al log I S
T N, — Iy Tit+1 Ni41 — Tit1

Example 3.1 The data in table 1 comes from Nelson (1982):

(t1,...,ts) = (6.12,19.92,29.64, 35.40, 39.72, 45.24, 52.32, 63.48),
(z1,...,79) = (5,16,12,18,18,2,6,17,73).

The combined estimator can be obtained to be 82.70 which is close to the maxi-
mum likelihood estimate, 82.67. We can confirm from Table 3.1 that the condi-

P inspection is close to z; since xg is relatively

tional information obtained from 1
large. If we stop at the 7** inspection time, the combined estimator will be

obtained to be 89.18 and the total information to get is 76.80.
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Table 3.1: Conditional maximum likelihood estimator, conditional information

and combined estimator based on eight inspections

i t; T; etim_l Itim_l (0)(1/92) w; 0;

1] 612 | 5 | 201.33 5.00 10.75 201.33
2 199216 3271 15.99 13.89 149.06
3| 206412} 11333 11.99 15.26 136.06
4 || 35.40 | 18 | 39.93 17.97 18.07 102.16
51 30.72 | 18 | 25.62 17.96 9.50 82.21
6 || 4524 | 2 | 267.71 2.00 4.06 87.44
7 5232 | 6 | 109.70 6.00 12.03 89.18
8 || 63.48 | 17 | 53.31 16.94 80.91 82.70
9 73 Iy .1g(0) = 93.84 | S°°_ wi = 164.47

Table 3.2: Conditional maximum likelihood estimator, conditional information

and combined estimator based on three inspections

i t; T; Gmti_l Itilti—1 (9)(1/92) w; G;

1] 1992 ] 21| 148.23 20.97 41.31 148.23
2 || 39.72 | 48 | 49.67 47.40 30.44 79.91
3] 63.48 [ 25 | 80.68 24.82 84.28 80.11
4 73 Iy .t5(0) =93.11 | S°7_ w; = 156.03

Suppose now that the inspections are done only three times at 2"¢, 5% and

8th

inspection times:

(t1, 2, t3) = (19.92,39.72,63.48),

(561, T2,T3, CL‘4) = (21, 48, 25, 73)

We can see that the total information in table 3.2 is still close to the number of

failures, 94 and the loss of information is just 0.73 due to reducing the inspection

size from 8 to 3 as can be expected.

However, the total information is far from the number of failures if the failure

rate is not low. We can show that the total information is 85.14 which is far from

the total number of failures 94 if we assume xg in Table 3.1 to be 1 and the total

information is 75.78 if we assume x4 in Table 3.2 to be 1. Thus we can conclude

that the intermittent inspection is effective if zx,1/ny (survival rate) is large.

Remark 3.1 For the type II right censored case, where only ¢; < --- < ¢,

are observed from a sample of size n, the conditional likelihood of t; given ¢; ;
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can be written as

. f(t:;6) L= F(ts6) \"
L(t;|t;—1;0) o 1— F(t;—1;0) (1 — F(tz—1;9)> '

For an exponential distribution, the likelihood can be written as
1 1 .
L(G; tilti—l) X 3 exp (-——-9—(71 -1+ 1)(ti - ti—l)) .

Then the conditional maximum likelihood estimator can be obtained as éti|ti—l =
(n—1i+1)(t; —ti—1). We can here recall the well-known fact in Sukhatme (1937)
that (n — 4+ 1)(¢; — ti—1)’s, 4 = 1,...,n, are independently and exponentially
distributed. Since the exact Fisher information in each conditional likelihood can
be obtained to be 1, the combined estimator can be written as

r

> %(n — i+ 1)(t — ti1)

=1
1 T
== (Ztﬁ— (n—r)tr> ,
T \“
=1

which is exactly equivalent to the maximum likelihood estimator.

D>
<
I

4. Performance of the Combined Estimator

In this section, we study the performance of the combined estimator through
Monte Carlo simulation for the sample size n = 20,30, 50,100,200 and k& =
2,3,5,7,10 cases. The scale parameter of an exponential distribution is assumed
to be 1 without loss of generality and the inspection times are determined to be
optimally spaced, which has been studied in (Kulldorff, 1961; Nelson, 1982). For
comparison, we consider the mid-point estimator,

k
t; +1;-1
(Z Jiz—l——é—z** + tkfl?k+1>
A i=1

00: )

k
Dz
i=1
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and the approximate maximum likelihood estimator in Seo and Yum (1993),
k A

> @il(ti — ti-1)/60)”

i=1

k
12 Z Ty
i=1

The average mean squared errors based on 50,000 simulations for éo, 0, and
the combined estimator, 6y, have been calculated and are listed in Table 4.1. If

ny = 71, we have 0y = t; /2 and 6, =t /3 but the combined estimator and also
the maximum likelihood estimator gives a little bit awkward estimate of 0. As a
result, the combined estimator shows poor performance for small n and large k,
but shows similar performance to 4, if n/k is large.

5. Conclusions

In this paper, we use the decomposition of likelihoods of grouped data to see
how much information we can get with additional inspection. For the exponential
distribution, the additional information is close to the number of failures in the
inspection interval if the failure rate is low. Thus we can conclude that if the
failure rate is low, we do not need a large inspection size. We can also combine

Table 5.1: The average mean square errors based on 10,000 simulations

n/k 2 3 5 7 10
6o | 0.0740 | 0.0620 | 0.0555 | 0.0531 | 0.0511
20 || 65 | 0.0696 | 0.0654 | 0.0622 | 0.0604 | 0.0589
0, | 0.0642 | 0.0583 | 0.0544 | 0.0526 | 0.0507
fo | 0.0527 | 0.0428 | 0.0372 | 0.0355 | 0.0347
30 || 6% | 0.0419 | 0.0403 | 0.0389 | 0.0381 | 0.0378
6, | 0.0410 | 0.0381 | 0.0358 | 0.0348 | 0.0343
6o | 0.0372 | 0.0281 | 0.0226 | 0.0214 | 0.0207
50 |[ @ | 0.0247 | 0.0228 | 0.0220 | 0.0218 | 0.0216
0, | 0.0242 | 0.0227 | 0.0211 | 0.0207 | 0.0204
fo | 0.0256 | 0.0170 | 0.0122 | 0.0110 | 0.0103
100 || 8, | 0.0123 | 0.0110 | 0.0106 | 0.0105 | 0.0103
6, | 0.0119 | 0.0110 | 0.0105 | 0.0103 | 0.0101
6o | 0.0204 | 0.0118 | 0.0071 | 0.0059 | 0.0053
200 || 6% | 0.0062 | 0.0056 | 0.0053 | 0.0052 | 0.0051
6. | 0.0060 | 0.0055 | 0.0053 | 0.0051 | 0.0051
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the conditional maximum likelihood estimators to construct a linear approximate
maximum likelihood estimator.

Acknowledgements

The author is grateful to an anonymous referee for his careful comments.

References

Gersbakh, I. (1995). On the Fisher information in the Type-I censored and quantal response
data. Statistics and probability Letters, 23, 297-306.

Kendell, P. J. and Anderson, R. L. (1971). An estimation problem in life-testing. Technomet-
rics, 13, 289-301.

Kulldorf, G. (1961). Estimation from Grouped and Partially Grouped Samples. John Wiley &
Sons, New York.

Meeker, W. Q. (1986). Planning life tests in which units are inspected for failure. IEEE
Transactions on Reliability, 35, 571-578.

Nelson, W. (1977). Optimum demonstration tests with grouped inspection data from expo-
nential distribution. IEEFE Transactions on Reliability, 36, 226-231.

Nelson, W. (1982). Applied Life Data Analysis. John Wiley & Sons, New York.

Park, S. (1996). An asymptotic relation arising in the decomposition of the likelihood of order
statistics. Statistics and Probability Letters, 29, 101-106.

Park, S. (2003). On the asymptotic Fisher information in order statistics. Metrika, 57, 71-80.

Park, S. and Kim, C. E. (2006). A note on the Fisher information in exponential distribution.
Communications in Statistics: Theory and Methods, 35, 13-19.
Seo, S. and Yum, B. (1993). Estimation methods for the mean of the exponential distribution
based on grouped and censored data. IEEE Transactions on Reliability, 42, 87-96.
Shapiro, S. S. and Gulati, S. (1996). Selecting failure monitoring times for an exponential life
distribution. Journal of Quality Technology, 28, 429-438.

Sukhatme, P. V. (1937). Tests of significance for samples of the x> population with two degrees
of freedom. Annals of Eugenics, 8, 52-56.

Tallis, G. M. (1967). Approximate maximum likelihood estimates from grouped data. Tech-
nometrics, 9, 599-606.

Zheng, G. and Gastwirth, J. L. (2000). Where is the Fisher information in an ordered sample?.
Statistica sinica, 10, 1267—-1280.

[Received January 2007, Accepted April 2007)



