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A Study on Bandwith Selection Based on ASFE for
Nonparametric Regression Estimator

'Tae Yoon Kim!

ABSTRACT

Suppose we observe a set of data (X1,Y1), --,(X,,Y,) and use the
Nadaraya-Watson regression estimator to estimate m(z) = E(Y|X = z). In
this article bandwidth selection problem for the Nadaraya-Watson regression
estimator is investigated. In particular cross validation method based on av-
erage square error (ASF) is considered. Theoretical results here include a
central limit theorem that quantifies convergence rates of the bandwidth
selector.
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1. Introduction

Let (X1,Y1),...,(Xn,Y,) be independent identically distributed R?—valued
random vectors with Y real valued. Consider the problem of estimating the

regression function,
m(z) = BE(Y|X = 1)

using (X1,Y1),...,(Xn,Ys). To estimate m(z) kernel estimators introduced by
Nadaraya and Watson are considered:

nK (e,
mh(x) =1 ( h )

YR K(E)

where K : R — R is a kernel function and h = h(n) € R™ is the bandwidth (i.e,
smoothing parameter). One of the crucial points in applying 7, is the choice of
the bandwidth h. In this paper cross validation rule, an ASE based bandwidth
rule, is in{restigated. The cross validation rule basically attempts to estimate
ASE given by

dalh) = 'S Tn(X;) = m(X))Pw(X;)
j=1

!Department of Statistics, Keimyung University, Taegu, 704-701, Korea.



22 Tae Yoon Kim

and its minimizer hg by finding iL, the minimizer of
OV (h) = n " Y1 — i (X)) Pw(X)

n
=1

J

where 11, (X;) is a “leave one out” version of 7i; that is, the observation (X;,Y))
is left out in constructing rh;. The weight function w is introduced for elimination
of boundary effects.

Hérdle, Hall and Marron (1988) established the convergence rate for the cross
validation rule for Priestley and Chao regression estimator given by

T —

n .
() =n" At Y K( th)Yi.
=1

In their setting, it is assumed that z1,...,2, are equally spaced design points
on unit interval. Since Hardle et al. (1988) little work has been done about
ASE based bandwidth selectors for kernel regression estimator in various settings,
though their result is restricted to a very simple case. Behind this is not that
kernel regression estimator has limited use but that analyzing bandwidth selector
in more general setting usually faces difficulty from analytical point of view. For
example, behaviour of ASE has been relatively unknown compared to integrated
square error (ISE) (see Kim (1997) for a related result).

In this paper we extends their result by establishing convergence rates for
more general Nadaraya-Watson regression estimator with random design points.
Note that asymptotic optimality of the cross validation rule for Nadaraya-Watson
regression estimator is verified by Hardle and Marron (1985).

2. Asymptotic results

To handle technical difficulty from the random denominator of the Nadaraya-

Watson estimator 7i, we will consider the following distances (see, e.g. Hardle
and Marron (1985));

&i(h) = n!

J

[n(X;) — m( X P FR(X5) £ (X w(X;) = n~?
1 j

[, (X;))?

n
= 1

n

and dj;(h) = Ed%(h). Indeed one may write

~

iy () = (m(z) — m(z)) fu(z) f(z)™
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where
fa(z) = (nh)~ ZK‘(—‘h—)-
Now let h% and h§ be the minimizer of d% (k) and d%,(h) respectively. If m” is

uniformly continuous, then under the assumption that all the moments of ¢, exist,
da(h), d%(h), and d},(h) are approximately

d(h) =0~ h70? [ 17w [ K2 4wt [y [,

in the sense that

da(h) —df (h d%(h) — di (h dh, (h) — d:
sup ( Al )* m )' al )* n )‘ ha )* dy (h) D S50 (@21)
he€Hn, dm(h) dm(h) dm(h)
in probability as n — oo, where H, = [n~1%% n~?], for arbitrary small § > 0 (see
Marron and Hirdle (1986)). A consequence of (2.1) is that hg and h} are each
roughly equal to the unique minimizer of d7,, hY, = con ~1/5 where
1/5 |
w= o [ur ' [R[RP [T @)
that is,
ho /Py g/ hey By [ ey — 1 (2.3)

in probability. In addition it has been proved by Hérdle and Marron (1985)
h/RL, — 1. (2.4)

Major objective of this article is to study how fast the convergence in (2.3) and
(2.4) occurs. Now assumptions for Theorems 1 and 2 are summarized. (a) The
errors, ¢; are iid with mean 0 and all other moments finite. (b) The kernel func-
tion, K, is a symmetric, compactly supported probability density with a Holder
continuous second derivative. (c) The regression function m has a uniformly
continuous, integrable second derivative.

Theorem 1. Under the preceding assumptions
n310(h — ho) — N(0,0%) (2.5)

in distribution.
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Note that in (2.2), (2.3) and (2.4), all of h, hq, i, ki and h*, are tending to zero
at the rate n~/% and hence (2.5) says that the relative difference between h and
hi is of the very slow order n=1/10, It is also shown in the following theorem that
the difference between ﬁo and hf is of the same order.

Theorem 2. Under the preceding assumptions
n®/1(hg — ) = N(0,03)
in distribution.

Similar results have been established for Priestly and Chao estimator by Hall
et al. (1988), but with the equally spaced design points on the unit interval (i.e.
z; = i/n on [0,1]). This setting hardly justifies various situations that may occur
in reality. Our results extend their result to more general settings. As a result
some remarks made by Hall et al. still remain valid while other remarks need to
be be changed. For example, their remark that the bandwidth selector suffers the
excruciatingly slow speed still holds as long as hg is sought but the remark that
extension to the multivariate X; is statriaghtforward seems to be inappropriate.
In fact it is shown by Kim (1997) that random denominator in Nadaraya-Watson
may cause some problem to quadratic errors.

3. Proofs

Most of steps taken in the proof below are those taken by Hérdle et al. (1988)
but adjustments are to be made to handle random design points. Now we define
the following quantities for later use.

da(h) =n"1 Y [ ;(X;) — m(X;)Pw(X;)
=1

n
Z 1,3 () = m(X5) 2 fn g (X302 £ ()" w(X;).
The proof of Theorem 2 is based on the expansion
0 = d}s (ho) = diy;(ho) + ds(ho) — i (ho) + di (ho) — diy (ho)

= (ho — hi)dt (k1) + da(ho) — % (ho) + D'(ho), (3.1)
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where h; is between hg and h§, and where
D(h) = dj3(h) — dps(R)

and where D', d,, d¥{, and d}; denote the derivatives with respect to h of D da4,
% and djps respectively.
For the proof of Theorem 1, note that

OV(h) = da(h) + () — n " 3 [m(X;) - ¥;Pw(X;)

=1

<

where .
LY g (X)) (m(X;) - Vi) (X)
Now write ~
CV(R) = da(h) — &5 (R) + &5 (R) — diy(h) + 2y (h)
5(A) = (1) + 8*(h) = ™ Sln(X,) — ¥y
where ~
i (g (X,) = M) () = V3) fog (65)F (X5) M),

Then the proof of Theorem 1 uses the following expansion

dy(h) — d4(h) + &4 (h) — djy(h) + djy () + &' (h) — 6¥'(h) + 67/ ().
(3.2)
To analyze expressions (3.1) and (3.2), we need the following lemmas. Notation

0=CV'(h)

used there includes
Ta(h) = n7th™1 4+ Al

Lemma 1. Forl =1,2,..., there is a constant c4, so that
sup Elry(h)"'hY2D'(R)|? < ¢4 (3.3)
heH,

and
sup Elry(h) " A28, (h) < c4. (3.4)

heH,
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Furthermore, there is an 1m, > 0 and a constant cs so that
Elry ()~ h!2[D' (k) = D' (W) < es(h™" b — b'|)™ (3.5)
Elrn(h) " hY2[6* (h) — 6*(K)]|* < es(h ™ |h — B/)™ (3.6)
whenever h,h' € Hy, with h <K and |h~1(h — k)| < L.

Proof: An application of Lemma 2 of Kim and Cox (1997) yields the desired
result. In fact Lemma 2 is established for dependent variables, which can be
easily adapted to the iid case. O

Lemma 2. For any 12 € (0,1/10),

sup {r,(h) " h2[ID'(B)] + |67 (B[]} = Op(n™). (3.7)
heHy

1/5

Furthermore, if han'/° tends to a constant, then

sup  ra(R)TTRYP[|D'(B) — D'(ha)l + 16" (h) = 67 ()] = 0p(1). (3.8)

|h—h1|<n—1/8-m2

Proof: Basically (3.7) and (3.8) follows from Lemma 1 above. See the proof of
Lemma 2 of Hardle et al. (1988) for its detailed verification. O

Lemma 3. For any 0 < an™ /5 < h < bn~1/% < oo
sup |4 (h) — ()] = 0p(n~7/1%)
h
Proof: Note that

da(h) — diy(h) =n~" 37 [~2m(Xa) (1 = F(X0)/ Fa(X0))w0(X3)

)

RO — £/ Fa(X0)P(X0)] = $1(8) + Sah).
where

S1(h) = 12 2 (X) (1= f(X0)/ fn(Xi))w(X)
=n! Z R (X (1 = J(X) /(X)) P (X).

Consider S} (h) first. It is easy to see that

dSy (h) fdh = —2 -12{ Jw(Xi) = dig(h) + i (W) [ — F(X2)/ Fa(X0)]
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+ i (Xa)w(Xs) — iy (h) + digh)[1 — £(X0)/ fu(X2))' } -

Then the above expression is less than

2sup|(1 - f(@)/ fu(@))w(@)|D(h)' + djy (R

+sup|(1 — f(2)/ fu(2))w(x))'||D(h) + djs (). (3.9)
Now we have that the first term of (3.9) is, for 0 < 7y < 1/10,

Op(n—7/10+7]2—2/5 +n—3/5—2/5) — Op(n——7/10)’ (310)
and the second term is
Op(n—1/5—9/10 +n_1/5_4/5) _ op(n_7/10). (3.11)

In (3.10) we used the uniform strong consistency of f, to f on the compact set
of z i.e., supgee | fu(z) — f(2)] = Op(n=%/5) and (3.7). To verify (3.11), it is easy
to check

(@)L~ f@)/fu@)]'| = | @)w@)[fu@)] f; (@) < dllfu@)]]

== B ) Y K 4 ) S B = 00 )

where L(u) = —uK'(u) which satisfies the usual conditions for the kernel function
K. Further it can be found that if A ~ ¢n~ /5 for some constant ¢ > 0 then
dip(h) = O(n=%) and |d%(h) — dig(h)] = Op(n=910) (see e.g. Hall (1984)).
Similar argument can be applied to Sy(h). O

Lemma 4. For some € > 0, |hg — hg| + |h — hi| = Op(n_1/5‘f),
Proof: First remember thét fza is the minimizer of d*. Now by (2.3) and (3.7)
(o) = d(ho) — &3 (h%) = d%y(ho) — diy(he) + Op(n~7/101m),
But by Lemma 3
d(ho) = dii(ho) — dls (o) = 0p(n~T/10).

Thus

dM(’AZO) - d?&(%) + Op(”—7/10+n2) = Op(”_Y/lo)-
Then d%; (ho) — d%, (k) = (ho — h%)d";(h1) where Ry is between ho and hj. So
letting € = —n + 1/10, |hg — Af| = Op(n~1/57¢) holds by (3.12) below. O
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Lemma 5. For any 0 < an /% <h < bn~1/5 < oo

sup 6% (h) = &' (B)] + |4 (h) = A3 (B)] = 0p(n~"/%).
Proof is done in a very similar fashion as in the proof of Lemma 3. O
Lemma 6. For any 0 < an™ /5 < h < bn~1/% < oo,

s () - diy ()] = D'(h) + o),
Proof: Note that

dji(h) — dyy(h) = di{(h) — d(h) + D' (h).
By (2.3), it suffices to show that
|5 (h) — d{(h)] = ap(n~"/10)

which could be verified as in the proof of Lemma 3 of Hardle and Marron (1985).

zg]-(e} 23]
[5*’(@;) 2N 0 1] op o2

in distribution, where (letting * denote convolution)

Lemma 7.

0% = 805304[/ w? /(K + K — K L)% + 46(2)0'2[/ u2K]2[/(m”)2 2.

02 = 800_304[/ w? /(K — L)Y+ 40802[/ UQK]Z[/(m")Qf“le].
and
034 = —8c;3a4[/ w? /(K*K—K*L)(K—L)] —40[2)02[/ u2K]2[/(ni”)2f’4w2].

Proof: This proof is almost identical to the proof of Lemma 4 of Hardle, et al.
(1988). Details are omitted.
To finish the proof of Theorem 2, note first that

n2/5d§(,[(h1) — C3 (3.12)



Regression bandwidth selection 29

where ¢z = (2/c)o?[[ K2[f wf~ 2+ 3c3[[ v K]*[[(m")?w/f~?]. Tt follows from
Lemma 4 and (3.8) that D'(ho) = D'(h}) + 0,(n~7/1%). Hence by Lemma 7,
n"/Y D! (hg) = N(0,03). Applying Lemmas 2-4 and (3.12) to (3.1), we have

0 = di; (ho) + D'(h}) + 0y (n~7/10)

= (ho — h§)can ™% + D'(h§) + 0p(n~"/10), (3.13)

from which it follows that n3/1%(hy — h§) — N(0,03) where 03 = 03/c3.

The proof of Theorem 1 takes slightly more work than the proof of Theorem
2. For h € [an~/% bn~1/%] (where a and b are arbitrary constants), (3.2) and
Lemmas 2, 4, 5 and 6 give

0 = diy(h§) + 6™ (ki) + D'(h§) + 0p(n™"/10). (3.14)
| Working on (3.14) as in (3.1) and (3.13) gives
0= (h— hgesn™/% + 5% (15) + D' (1) + 0p(n™"/1%)
which after subtracting (3.13) yields
8" (h) = (h — ho)ean™/% 4 0p(n~7/19),

Hence by Lemma 7, n®/19(h — hy) — N(0,0%), where 0? = 03/c2. O
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