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Abstract
In this paper a support vector method is proposed for use when the sample observations are contaminated

by a normally distributed measurement error. The performance of deconvolution density estimators based on the
support vector method is explored and compared with kernel density estimators by means of a simulation study.
An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator
with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.

Keywords: Deconvolution, kernel estimator, support vector method, reproducing kernel Hilbert
space(RKHS).

1. Introduction

The problem of measurements being contaminated with noise exists in many different fields (e.g.
Mendelsohn and Rice, 1982; Stefanski and Carroll, 1990; Zhang, 1992). This deconvolution problem
of interest can be stated as follows. Let X and Z be independent random variables with density
functions f (x) and q(z), respectively, where f (x) is unknown and q(z) is known. One observes a
random sample Y1, . . . , Yn from Y = X + Z. The objective is to estimate the density function f (x)
where g(y) is the convolution of f (x) and q(z), g(y) = ( f ∗ q)(y) =

∫ ∞
−∞ f (y − z)q(z)dz. Following

the work of Fan (1991), two types of error distributions have been considered: ordinary smooth and
super smooth distributions. Gamma or double exponential distribution functions are ordinary smooth,
that is, the Fourier transform q̃(ξ) (=

∫ ∞
−∞ e−iξxq(x)dx) of q has a polynomial descent. Normal or

Cauchy distribution functions are super smooth, that is, the Fourier transform q̃ of q has an exponential
descent. The case of a normally distributed measurement error is generally more important in practice
than that of a double exponential or gamma distributed measurement error. The most popular approach
to this deconvolution problem has been to estimate f (x) using a kernel estimator and Fourier transform
(e.g. Carroll and Hall, 1988; Liu and Taylor, 1989; Fan, 1991). While kernel density estimation
is widely considered the most popular approach to density deconvolution, other alternatives have
been proposed (e.g. Mendelsohn and Rice, 1982; Pensky and Vidakovic, 1999; Hall and Qiu, 2005;
Hazelton and Turlach, 2009).

Recently, the support vector method has drawn significant attention on classification and regres-
sion problems. The support vector method is a tool to solve multidimensional function estimation
problems. It was developed in Russia in the sixties by Vapnik and co-workers (Vapnik and Lerner,
1963; Vapnik and Chervonenkis, 1964). It was initially designed to solve pattern recognition prob-
lems. Later the support vector method was extended to regression and real-valued function estimation.

This research was supported by the Daegu University Research Grant, 2011.
1 Professor, Department of Statistics, Daegu University, Kyungbuk 712-714, Korea. E-mail: shlee1@daegu.ac.kr



518 Sungho Lee

The support vector regression algorithm (see, for example, Vapnik, 1995) computes a nonlinear func-
tion in the space of the input data Rm by using a linear function in high dimensional feature space F
with a dot product. The functions take the form f (x) = ω · Φ(x) + b with Φ : Rm → F and ω ∈ F .
Weston et al. (1999) proposed the support vector method for the density function estimation using a
support vector regression algorithm. The support vector regression method based on a reproducing
kernel Hilbert space(RKHS) was discussed by Mukherjee and Vapnik (1999). Lee and Taylor (2008)
and Lee (2010) applied the support vector method to the density deconvolution problem when the
distribution of the error is double exponential.

In this paper two different deconvolution density estimators are briefly reviewed when the sample
observations are contaminated by a normally distributed measurement error and then a support vector
method is proposed for use in the case of a normally distributed measurement error. The performance
of the deconvolution density estimator that uses a support vector method is compared with the classical
deconvolution kernel density estimator via a simulation study.

2. Deconvolution Estimators when Measurement Errors are Normal

2.1. Classical deconvolution kernel estimators

The most popular approach to the deconvolution problem is to estimate f (x) using a kernel estimator
and Fourier transform. The deconvolution kernel estimator (e.g. Carroll and Hall, 1988; Stefanski and
Carroll, 1990; Fan, 1991) is

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞
eiξ(x−Y j)K̃(hnξ)/q̃(ξ) dξ, (2.1)

where 0 < hn → 0, n → ∞ is a smoothing parameter called the bandwidth and K̃(ξ) is the Fourier
transform of K. Carroll and Hall (1988) showed that if f (x) has m bounded derivatives and errors are
normal, then the fastest attainable pointwise convergence rate of any nonparametric estimator of f (x)
is only (log n)−m/2. The deconvolution kernel estimator (2.1) achieves the optimal rates (Stefanski
and Carroll, 1990). The asymptotic theory gives that the optimal rates of convergence for a normal
measurement error is very slow and hence very large samples may be required before the asymptotics
take effect. Since the normal distribution is frequently used in application, Fan (1992) investigated
how large a noise level is acceptable. To this goal, let Y1, . . . , Yn be a random sample from Y = X + Z

and Z = σ0ϵ, where σ0 parametrizes the noise level and ϵ ∼ N(0, 1). He showed that if σ0 =

√
σ2

Z =

O(n−1/(1+2m)), then deconvolution is just as difficult as the ordinary density estimation in terms of
the rates of convergence (Theorem 4 in Fan, 1992). Thus, when σ2

Z is small, the usual normalized
Gaussian kernel can still be practical to calculate a deconvolution kernel estimator. He suggested a
deconvolution kernel estimator (2.2) that uses the normalized Gaussian kernel, K̃(hnξ) = e−0.5h2

nξ
2
:

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞
eiξ(x−Y j)K̃(hnξ)/q̃(ξ) dξ

=
1

2πn

n∑
j=1

∫ ∞

−∞
eiξ(x−Y j)e−0.5ξ2(h2

n−σ2
Z ) dξ

=
1
n

n∑
j=1

1√
2π

(
h2

n − σ2
Z

)e−(x−Y j)2/2(h2
n−σ2

Z), h2
n > σ

2
Z (2.2)
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and compared (via simulation studies) the performance of the estimator (2.2) with the following de-
convolution kernel estimator (2.4) which is well-known in the presence of normal measurement error.
In general, the estimator (2.2) is not appropriate for a deconvolution kernel estimator because the
condition, hn → 0 as n → ∞, is not satisfied. Thus, when σ2

Z is large, the estimator (2.2) cannot be
used clearly. In this case, in order to avoid problems of integrability, a kernel K that has compactly
supported Fourier transform K̃(t) = (1 − t2)3I[−1,1](t) is used in common. The Fourier transform K̃(t)
corresponds to the kernel function K,

K(x) =
48 cos x
πx4

(
1 − 15

x2

)
− 144 sin x

πx5

(
2 − 5

x2

)
. (2.3)

Using this kernel K̃(t) = (1 − t2)3I[−1,1](t), a deconvolution kernel estimator f̂ (x) in the presence of
normal measurement error can be calculated as follows:

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞
eiξ(x−Y j)K̃(hnξ)/q̃(ξ) dξ

=
1
πnhn

n∑
j=1

∫ 1

0

(
cos ξ

(
x − Y j

hn

)) (
1 − ξ2

)3
eξ

2σ2
Z/2h2

n dξ. (2.4)

Fan (1992) gave an optimal rate of convergence(= O((log n)−m/2)) of this estimator (2.4) in terms
of the mean of the weighted Lp-norms and presented several simulation studies that illustrates the
difficulty of deconvolution. Wand (1998) derived formulae for an exact computation of the mean
integrated squared error(MISE) for a collection of target densities and gave some examples of these
calculations using the estimator (2.4). For example, if f (x) is a mixture normal distribution, then the
best possible rate of convergence of MISE of the estimator (2.4) is of order (log n)−1. The results in
Wand (1998) indicates that, for high levels of a normal measurement error, Gaussian deconvolution is
difficult.

2.2. Weighted deconvolution kernel estimators

Recently Hazelton and Turlach (2009) proposed a weighted kernel density estimator for the deconvo-
lution problem. In cases with the Gaussian kernel and normal measurement error Z ∼ N(0, σ2

Z), they
showed that f̂ω(x) has the simple expression as follows:

f̂ω(x) =
1
n

n∑
i=1

ωiKh(x − Yi), ωi ≥ 0,
n∑

i=1

ωi = n, Kh(x) =
(√

2πσh

)−1
e−x2/2σ2

h ,

where unknown weight vector ω will be estimated based on Q(ω),

Q(ω) =
∫ ∞

−∞

(
f̂ω ∗ q(y) − ĝ(y)

)2
dy

=
1
n2

 n∑
i=1

n∑
j=1

ωiω jϕ√2λ(Yi − Y j) +
n∑

i=1

n∑
j=1

ϕh
√

2(Yi − Y j) − 2
n∑

i=1

n∑
j=1

ωiϕν(Yi − Y j)

 ,
where ϕλ(x) = 1/(

√
2πσλ)e−x2/2σ2

λ , ϕh(x) = 1/(
√

2πσh)e−x2/2σ2
h , σ2

λ = σ
2
h + σ

2
Z , σ2

ν = σ
2
Z + 2σ2

h, and
ĝ(y) = 1/n

∑n
i=1 Kh(y − Yi).
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One immediate attraction of f̂ω(x) is that it will never take negative values. They also showed
that if the optimal weighting scheme ωi (= f (Yi)/g(Yi)) was known, then the estimator would have
the MISE of an asymptotic order of n−4/5. Through simulation they argued that f̂ω(x) is a competitive
estimator over the classical deconvolution kernel estimator.

2.3. Support vector deconvolution estimators

Now we will introduce the other method of estimation of a deconvolution density using the support
vector regression method based on a reproducing kernel Hilbert pace(RKHS). A (real) RKHS H is
a Hilbert space of real-valued functions f on an interval τ with the property that, for each t ∈ τ,
the evaluation functional Lt, Lt : f → f (t), is a bounded linear functional. Then, by Riesz repre-
sentation theorem, for each t ∈ τ there exists a unique element Kt ∈ H such that for each f ∈ H,
Lt( f ) = f (t) = (Kt, f ). The function defined by Ku(v) = K(u, v) = (Ku,Kv) for u, v ∈ τ is the
reproducing kernel. Then, by the Moore-Aronszajn Theorem (Aronszajn, 1950), to every positive
definite function K on τ × τ there corresponds a unique RKHS HK of real valued functions on τ
with K as its reproducing kernel. Note that any positive definite function K(u, v) has an expansion
K(u, v) =

∑∞
i=1 λiϕi(u)ϕi(v). Let us consider the set of functions, f (x, ω) =

∑∞
i=1 ωiϕi(x), and define

the inner product as ( f (x, ω), f (x, ω∗)) =
∑∞

i=1 ωiω
∗
i /λi. Then we have a RKHS HK with its reproduc-

ing kernel K and will apply these properties of RKHS to the estimation of a deconvolution density.
The following Bochner’s theorem states that the Fourier transform of a positive measure constitutes a
positive definite kernel.

Theorem 1. (Bochner, 1959) A function K(s − t) is positive definite if and only if it is the Fourier
transform of a symmetric, positive function K̃(ξ) decreasing to 0 at infinity.

The Gaussian kernel represents a legitimate inner product in feature spaceF and satisfies Mercer’s
condition. Let C0(R) denote the set of continuous functions on R that vanish at infinity. Then the
reproducing kernel Hilbert space Hσ (Vert and Vert, 2006) associated with the normalized Gaussian
kernel K(x, y) = (σ

√
2π)−1e−(x−y)2/2σ2

is

Hσ =
{

f ∈ C0(R) : f ∈ L1(R) and
∫

R

∣∣∣ f̃ (ξ)
∣∣∣2 eσ

2ξ2/2dξ < ∞
}

and the associated dot product is given by

< f , g >Hσ=
1

2π

∫
R

f̃ (ξ)g̃(ξ)∗eσ
2ξ2/2dξ.

Since K̃(ξ) (= (1 − ξ2)3I[−1,1](ξ)) is also a symmetric, positive function decreasing to at infinity, the
reproducing kernel Hilbert space H associated with the kernel K,

K(x) =
48 cos x
πx4

(
1 − 15

x2

)
− 144 sin x

πx5

(
2 − 5

x2

)
is a subspace of L2(R) with norm, || f ||2H = 1/(2π)

∫
R | f̃ (ξ)|2/K̃(ξ) dξ < ∞.

The following support vector method based on Phillips’ residual method (Phillips, 1962) was
proposed by Mukherjee and Vapnik (1999) and Lee (2010). In order to estimate f (x), first, g(y) will
be estimated using the reproducing kernel of RKHS. Let

g(y, ω) =
n∑

i=1

ωiKh(y,Yi), ωi ≥ 0,
n∑

i=1

ωi = 1
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and

minimize Ω(g, g) = (g, g)H =

n∑
i, j=1

ωiω jKh(Yi,Y j)

subject to max
i

∣∣∣∣∣∣∣∣Gn(y) −
∫ y

−∞

n∑
j=1

ω jKh(y′,Y j)dy′

∣∣∣∣∣∣∣∣
y=yi

= ϵ.

Then the coefficients ωi’s can be found by solving the following quadratic programming problem and
applying the equation ω = Γ−1

h R(α − α∗):

minimize
1
2

(α − α∗)tRtΓ−1
h R(α − α∗) −

n∑
i=1

Yi(αi − α∗i ) + ϵ
n∑

i=1

(αi + α
∗
i ), 0 ≤ α∗i , αi ≤ C, i = 1, . . . , n

where Γh = [Kh(Yi,Y j)]n×n, Rt = [ri j]n×n, ri j =
∫ Yi

−∞ Kh(y,Y j)dy =
∫ Yi

−∞ (1/hn)K((y − Y j)/hn)dy.
Then, applying the Fourier inversion formula,

f̂ (x) =
1

2π

∫ ∞

−∞

˜̂g(ξ)
q̃(ξ)

eiξx dξ =
1

2π

∫ ∞

−∞

n∑
j=1

ω jK̃h(Y j, ξ)eiξx/q̃(ξ) dξ.

When Z ∼ N(0, σ2
Z) and σ2

Z is small, Gaussian kernel can be used:

f̂ (x) =
1

2π

∫ ∞

−∞

n∑
j=1

ω jK̃h(Y j, ξ)eiξx/q̃(ξ) dξ

=
1

2π

n∑
j=1

ω j

∫ ∞

−∞
e−iξY j−0.5h2

nξ
2
e0.5σ2

Zξ
2
eiξx dξ

=

n∑
j=1

ω j√
2π

(
h2

n − σ2
Z

)e−(x−Y j)2/2(h2
n−σ2

Z), h2
n > σ

2
Z (2.5)

where

K̃h(Y j, ξ) =
∫ ∞

−∞
Kh(Y j, y)e−iξydy

=

∫ ∞

−∞

1
√

2πhn
e−(y−Y j)2/2h2

n e−iξydy

= e−iξY j−0.5h2
nξ

2
.

When Z ∼ N(0, σ2
Z) and σ2

Z is large, using kernel (2.3)

f̂ (x) =
1

2π

∫ ∞

−∞

n∑
j=1

ω jK̃h(Y j, ξ)eiξx/q̃(ξ) dξ

=
1

2π

n∑
j=1

ω j

∫ 1

−1

(
1 − h2

nξ
2
)3

e−iξY j e0.5σ2
Zξ

2
eiξxdξ

=
1
π

n∑
j=1

ω j

∫ 1

0

(
1 − h2

nξ
2
)3

cos
(
ξ(x − Y j)

)
e0.5σ2

Zξ
2
dξ (2.6)
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(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5

Figure 1: The simulation study when target density f (x) is N(0, 1)

where

K̃
(
Y j, ξ

)
=

∫ ∞

−∞
K

(
Y j, y

)
e−iξydy

=

∫ ∞

−∞

48 cos
(
Y j − y

)
π
(
Y j − y

)4

1 − 15(
Y j − y

)2

 − 144 sin
(
Y j − y

)
π
(
Y j − y

)5

2 − 5(
Y j − y

)2


 e−iξydy

= e−iξY j (1 − ξ2)3I[−1,1](ξ).

3. Simulation and Discussion

In this section the support vector deconvolution estimator (2.5) and the classical deconvolution es-
timators (2.2) and (2.4) are compared via simulation studies when measurement errors are normal,
Z ∼ N(0, σ2

Z), and σ2
Z is small or large. Target distributions are selected from distribution functions

used in Hazelton and Turlach (2009). The empirical distribution function, Gn(y) = 1/n
∑n

i=1 I(Yi ≤ y),
is used as an estimator of G(y). The support vector deconvolution estimator (2.6) was also tried to
be compared, but unfortunately it showed the worst performance among four estimators. Thus only a
part of simulations for the estimator (2.6) is introduced in Figure 4. The estimator (2.5) showed supe-
rior performance than the estimator (2.6) in almost all the simulations. Probably, the reason for these
results seems to be due to computing difficulties in the estimation of ω’s and numerical integration
(Delaigle and Gijbels, 2007).

The Figure 1∼Figure 3 show the plots of the classical deconvolution estimates (2.2) and (2.4) and
the support vector deconvolution estimates (2.5) when 100 points are randomly generated respectively
from a target distribution f (x) and a noise distribution, normal distribution q(z) with mean zero. The
measurement error variance is set at low (= var(Z)/var(X) = 0.1), moderate (= var(Z)/var(X) = 0.25),
and high levels (= var(Z)/var(X) = 0.5) as shown in Hazelton and Turlach (2009). The exact proba-
bility density function f (x) is a shown in a bold line and the support vector deconvolution estimate is
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(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5

Figure 2: The simulation study when target density f (x) is 0.5N(−2.5, 1) + 0.5N(2.5, 1)

(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5

Figure 3: The simulation study when target density f (x) is 2/3N(0, 1) + 1/3N(0, 0.04)

shown in dashed lines. For the support vector deconvolution estimates, Gunn’s program (Gunn, 1998)
and MATLAB 6.5 were used. Each estimate was picked with the best possible value of parameters
based on the exact probability density function f (x).

Figure 1 presents the simulation study when a random sample of size 100 is generated from the
standard normal probability distribution f (x), and normal distribution q(z). The parameters (= hn) of
the kernel density estimator (2.2) and (2.4) corresponding to variance ratios of 0.1, 0.25 and 0.5 are
0.5, 0.6, 0.9 and 0.21, 0.21, 0.25 respectively.

The parameters (= hn) of the support vector density estimator corresponding to variance ratios of
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Figure 4: The simulation study for the estimator (2.6) when var(Z)/var(X) = 0.5

0.1, 0.25 and 0.5 are 1.0, 1.1, 1.1 respectively and ϵ = 0.05, C = ∞ are used.
Figure 2 presents the simulation study when a random sample of size 100 is generated from the

symmetric bimodal density 0.5N(−2.5, 1) + 0.5N(2.5, 1). The parameters (= hn) of the kernel density
estimator (2.2) and (2.4) corresponding to variance ratios of 0.1, 0.25 and 0.5 are 1.15, 1.6, 2.2 and
0.32, 0.40, 0.55 respectively. The parameters (= hn) of the support vector density estimator corre-
sponding to variance ratios of 0.1, 0.25 and 0.5 are 1.1, 1.5, 2.1 respectively and ϵ = 0.05, C = ∞ are
used.

Figure 3 presents the simulation study when a random sample of size 100 is generated from the
kurtotic density 2/3N(0, 1) + 1/3N(0, 0.04). The parameters (= hn) of the kernel density estimator
(2.2) and (2.4) corresponding to variance ratios of 0.1, 0.25 and 0.5 are 0.45, 0.6, 0.8 and 0.15, 0.20,
0.25 respectively. The parameters (= hn) of the support vector density estimator corresponding to
variance ratios of 0.1, 0.25 and 0.5 are 0.75, 0.8, 0.8 respectively and ϵ = 0.05, C = ∞ are used.

Figure 4 presents the simulation study when a random sample of size 100 is generated from the
standard normal probability distribution f (x), and normal distribution q(z). The parameters (= hn)
of the kernel density estimator (2.2) corresponding to variance ratio of 0.5 are 0.9, 2.2, 0.8 and the
parameters (= hn) of the support vector deconvolution estimator (2.6) corresponding to a variance
ratio of 0.5 are 0.2, 0.2, 0.2 respectively and ϵ = 0.05, C = ∞ are used.

Almost all the Figures show that the support vector deconvolution estimator with the Gaussian
kernel (2.5) is as good as the classical deconvolution kernel estimator (2.2) and (2.4). Its implementa-
tion of the classical deconvolution kernel estimator (2.4) is more expensive than that of the classical
kernel density estimator (2.2) and the support vector deconvolution estimator with the Gaussian kernel
(2.5). Fan (1992) indicates, the classical deconvolution estimator with the Gaussian kernel is good for
a small variance of Z; however, not appropriate for a large variance of Z. An interesting result of the
figures is that for the estimation of kurtotic density the support vector deconvolution estimator (2.5)
shows good performance for the classical deconvolution kernel estimator (2.2) and (2.4) as Figure 3
indicates.
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4. Concluding Remarks

In this paper different deconvolution density estimators were introduced and explored when the sam-
ple observations are contaminated by a normally distributed error. Even though the simulation in
this paper is limited, it appears to indicate that the support vector deconvolution estimator with a
Gaussian kernel (2.5) shows a good performance for the classical deconvolution kernel estimators in
ω = Γ−1

h R(α − α∗) the estimation of kurtotic density. Note that the support vector deconvolution esti-
mator is attractive in the sense that some coefficients are very close to zero. Its implementation of the
classical deconvolution kernel estimator (2.4) seems to be more expensive than that of the classical
kernel density estimator (2.2) and the support vector deconvolution estimator with Gaussian kernel
(2.5). A simulation study of the support vector deconvolution estimator (2.6) did not show the ex-
pected performance for other estimators. However, we speculate that the estimator (2.6) will show
better performance through the improvement of a numerical integration method.
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