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Abstract
The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics litera-

ture because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian
analysis of these models, one may face the problem of lack of robustness with respect to underlying prior as-
sumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more
robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of
linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the
coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using
a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as
restricted Stein rule estimators.

Keywords: spatial autoregressive (SAR) model, generalized Bayes estimator, restricted least
squares estimator, Stein rule estimator, minimaxity

1. Introduction

The static spatial econometric models have found wide applications for modelling the spatial spill
over, i.e., the dependence of level of response variable on the levels of response variable in the neigh-
bouring regions along with a set of explanatory variables. The classical and Bayesian estimation
procedures for different spatial econometric models and their various applications have been exten-
sively discussed in Anselin (1988), Elhorst (2003, 2010, 2014), Anselin et al. (2008), and Lesage
and Pace (2009), Baltagi (2011), Lee and Yu (2015) to cite a few. While applying Bayesian proce-
dures for the estimation of parameters, a major drawback is the lack of robustness with respect to
underlying prior assumptions. For instance, the Bayes estimator derived under normal prior has in-
finite Bayes risk when true prior is Cauchy distribution, see Berger (1980). Stein (1973) proposed
the generalized Bayes (GB) estimator for the multivariate normal mean under a scale mixture of prior
distributions and established its dominance over the James-Stein and positive part James-Stein es-
timators. These estimators are more robust with respect to underlying prior assumptions and satisfy
minimaxity and admissibility properties, see Brown (1971) and Rubin (1977). Berger (1980) obtained
confidence region for multivariate normal mean based on GB estimator. Using Brown’s (1971) con-
dition, Maruyama (1998) developed class of admissible minimax GB estimators. Kubokawa (1991,
1994) established the dominates of GB estimator over the James-Stein estimator. Considering the
scale mixture of multivariate normal distribution as prior distribution, Maruyama (1999) derived the
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GB estimator for normal mean vector, established its admissibility and minimaxity and showed that
the estimator dominates positive part Stein rule estimator. For estimating the coefficients vector of
spatial autoregressive (SAR) model, Pal et al. (2016) proposed a family of shrinkage estimators and
investigated its asymptotic properties. Recently, Chaturvedi and Mishra (2019) derived a GB estima-
tor for estimating the parameters of a SAR model and investigated the admissibility and minimaxity
properties of the estimator. They applied the results to demographic data on total fertility rate for
selected Indian states. However, a major drawback of their work is that they assumed the disturbances
variance to be known.

For estimating the coefficients vector of a linear regression model in the presence of linear re-
strictions binding the coefficients, Srivastava and Srivastava (1983, 1984) and Srivastava and Chandra
(1991) considered families of improved restricted estimators obtained by mixing SR with restricted
least squares. Chaturvedi et al. (1996) extended the work of Srivastava and Srivastava (1984) to linear
model with non-spherical disturbances. Toutenburg and Shalabh (1996) analysed the performance
properties of predictors arising from the methods of restricted regression and mixed regression be-
sides least squares under a target function. Toutenburg and Shalabh (2000) considered the family of
Stein rule (SR) estimators proposed by Srivastava and Srivastava (1983) and analysed performance
properties of this family when the objective is to predict values outside the sample and within the
sample.

Notice that different families of Stein rule restricted regression estimators discussed above are
simply formulated by substituting Stein rule for the OLS and are not Stein rule in the true sense.
Chaturvedi et al. (2001) considered an alternative approach, which utilizes Rao (1973) and used the
generalized inverse as a principal tool for estimating coefficients. They proposed a family of shrinkage
estimators for the general linear regression model with non-spherical disturbances in the presence of
a set of linear restrictions binding the regression coefficients and investigated its asymptotic and finite
sample properties.

In Cobb-Douglas production function and its different variants such as trans-log production func-
tion, the assumption of constant returns to scale lead to a linear restriction on regression parameters
associated with logarithm of labour input and logarithm of capital input. It has been observed by
several researchers that the neighbouring production activities show interdependence because of sev-
eral externalities, and the usual assumption of spatial independence in frontier production functions
become inappropriate, see Glass et al. (2016), Tsukamoto (2019) and the references cited their in.
For modelling such kind of spatial spill over along with the phenomena of constant return to scale,
an SAR model with appropriate set of linear restrictions binding the coefficients provides appropriate
alternative.

The present paper considers SAR model with exact linear restrictions binding the regression pa-
rameters and derives a class of restricted GB estimator for the coefficients vector. Instead of applying
GB procedure directly to the restricted regression model, which may not yield an estimator satisfying
the restrictions, we followed an alternative approach based on the transformation used by Chaturvedi
et al. (2001) to derive the GB estimator. The resulting estimator retains the flavour of the GB concept,
yet gives rise to an estimator that satisfies the linear constraints. The minimaxity of restricted GB
estimator has been established and dominance over the usual restricted least squares estimator and re-
stricted Stein rule estimator have been demonstrated under a quadratic loss structure. For investigating
the finite sample behaviour of the class of estimators, a simulation study has been carried out. The
findings of the simulation show that the proposed class of restricted GB estimators performs superior
to the usual restricted least squares estimator over a wide range of parameters.
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2. Generalized Bayes estimator under linear restrictions

2.1. The spatial autoregressive model

Let us consider the spatial autoregressive (SAR) model

y = ρWy + Xβ + u, u ∼ N
(
0, σ2In

)
, (2.1)

where y is an (n × 1) vector of the sample observations on a dependent variable collected at each of
n locations, X is a (n × p) matrix of observations on p exogenous variables with rank(X) = p (< n),
β is a (p × 1) vector of regression parameters, ρ is the spatial autoregressive parameter, W is known
n × n spatial weight matrix which has been standardized to have row sum of unity. Suppose the prior
information available in the form of m exact linear restrictions binding the regression

r = Rβ, (2.2)

where r : m × 1 is a vector with known elements, and R : m × p is a matrix of rank m (< p) with
known elements. For obtaining the restricted regression estimator for β under the restrictions (2.2) let
us transform the model (2.1) as

ỹ = ρWy + X̃µ + u, (2.3)

where

ỹ = yN, X̃ = XN, N = Ip − R′
(
RR′

)−1R, µ = Nβ, µ̃ = R′
(
RR′

)−1 r.

We write

v(ρ) =
[
ỹ − ρWy

]′M [
ỹ − ρWy

]
, M = In − X̃

(
X̃′X̃

)+
X̃′.

When ρ is unknown, we replace it by its estimator

ρ̂ =
y′W ′Mỹ

y′W ′MWy
(2.4)

in (2.2) to obtain feasible restricted least squares estimator of µ.

2.2. Class of generalized Bayes estimators

For obtaining the GB estimator of regression coefficients vector under linear restrictions, we write the
model (2.3) as

y∗(ρ) = X̃µ + u, (2.5)

where y∗(ρ) = ỹ − ρWy. Then the pdf of y∗(ρ) is given by

p
(
y∗(ρ)|µ, σ2

)
=

1

(2π)
n
2σn

exp
{
−

1
2σ2

(
y∗ (ρ) − X̃µ

)′ (
y∗(ρ) − X̃µ

)}
. (2.6)

The prior distribution for β is taken as a g-prior N
(
µ̃, σ2gX′X

)
, with g = (1 − λ) /λ, (0 < λ < 1).

Since the prior mean of µ is 0 and prior covariance matrix of µ is

E
(
µµ′

)
=

1 − λ
λ

σ2X̃′X̃.
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We take the prior distribution of µ as normal with mean vector 0 and covariance matrix {(1 −
λ)/λ}σ2X̃′X̃. However, rank of X̃′X̃ is q = p − m, implying that the prior distribution of µ is degener-
ated and concentrated on a lower dimensional Euclidean space Rq. Hence, the prior pdf of µ is given
by

p
(
µ|σ2, λ

)
∝ σ−q

(
λ

1 − λ

) q
2

exp
{
−

λ

2σ2 (1 − λ)
µ′X̃′X̃µ

}
. (2.7)

Further, we assume that

p(λ) ∝ λ−a(1 − λ)c, (2.8)

and σ has the improper prior distribution

p (σ) ∝
1
σ
, 0 < σ < ∞.

Then the joint pdf of (y∗(ρ), λ) is obtained as

p (y∗(ρ), λ) ∝
λ

q
2−a(1 − λ)c(

v(ρ) + λµ̂ (ρ)′X̃′X̃µ̂(ρ)
) n

2
. (2.9)

The marginal density of y∗(ρ) is

m∗ (y∗(ρ)) ∝
∫ 1

0

λ
q
2−a(1 − λ)c(

v(ρ) + λµ̂(ρ)′X̃′X̃µ̂(ρ)
) n

2
dλ

∝

∫ 1

0

λ
q
2−a(1 − λ)c(

v(ρ) + µ̂ (ρ)′X̃′X̃µ̂(ρ)
) n

2

1 − (1 − λ)
µ̂ (ρ)′X̃′X̃µ̂(ρ)(

v(ρ) + λµ̂(ρ)′X̃′X̃µ̂(ρ)
) −

n
2

dλ

∝

∞∑
j=0

γ j

(
µ̂(ρ)′X̃′X̃µ̂ (ρ)

) j

(
v(ρ) + µ̂(ρ)′X̃′X̃µ̂ (ρ)

) n
2 + j

Γ
(

q
2 − a + 1

)
Γ
(
j + c + 1

)
Γ
(

q
2 − a + j + c + 2

) , (2.10)

where

γ j =
Γ
(

n
2 + j

)
Γ
(

n
2

)
j!
. (2.11)

We write δ(ρ) = v(ρ) (1 + w(ρ)) with w(ρ) = µ̂ (ρ)′X̃′X̃µ̂(ρ)/v(ρ). Then the posterior expectation of λ
given y∗(ρ) is

E (λ|y∗(ρ)) =

∑∞
j=0 γ jδ(ρ)−( j+ n

2 ) ∫ 1
0 λ

q
2−a+1(1 − λ) j+cdλ∑∞

j=0 γ jδ(ρ)−( j+ n
2 ) ∫ 1

0 λ
q
2−a(1 − λ) j+cdλ

=
2F1

(
n
2 , c + 1, q

2 − a + c + 3, 1
δ(ρ)

)
Γ
(

q
2 − a + 2

)
Γ
(

q
2 − a + c + 2

)
2F1

(
n
2 , c + 1, q

2 − a + c + 2, 1
δ(ρ)

)
Γ
(

q
2 − a + 1

)
Γ
(

q
2 − a + c + 3

)
= φac(w(ρ))

(
say

)
. (2.12)
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Here, the confluent hypergeometric function 2F1 (a, b; c; z) is defined as

2F1 (a, b; c; z) =

∞∑
j=0

(a) j(b) j

(c) j

z j

j!
.

Then the GB estimator of µ is

µ̂G(ρ) =
[
1 − φac(w(ρ))

]
µ̂ (ρ) . (2.13)

Hence, the restricted GB estimator of β is given by

β̂RG (ρ) = µ̂G(ρ) + µ̃. (2.14)

Let us write

φr(w(ρ)) = w(ρ)

∫ ∞
0

∫ 1
0 λ

q
2−a+1(1 − λ)cσ−(n+1) exp

{
−

v(ρ)
2σ2

}
exp

{
−
λv(ρ)w(ρ)

2σ2

}
dλdσ∫ ∞

0

∫ 1
0 λ

q
2−a(1 − λ)cσ−(n+1) exp

{
−

v(ρ)
2σ2

}
exp

{
−
λv(ρ)w(ρ)

2σ2

}
dλdσ

= w(ρ)φa,c(w(ρ)). (2.15)

Then we can express the GB estimator µ̂(ρ) as

µ̂G(ρ) =

[
1 −

v(ρ)
µ̂(ρ)′X̃′X̃µ̂(ρ)

φr(w(ρ))
]
µ̂(ρ).

The restricted GB estimator β̂RG(ρ) is given by

β̂RG(ρ) =

[
1 −

v(ρ)
µ̂ (ρ)′X̃′X̃µ̂(ρ)

φr(w(ρ))
]
µ̂(ρ) + µ̃. (2.16)

3. Minimaxity conditions

Notice that the rank of matrix X̃ (or X̃′X̃) is q = p − m. Thus, we can find p × p orthogonal matrix P,
such that

P′X̃′X̃P =

[
Λq 0
0 0

]
= diag

(
λ1, λ2, . . . , λq, 0, . . . , 0

)
, (3.1)

where λ1, λ2, . . . , λq are eigen values of X̃′X̃. Define P = [ P1 P2 ], where P1 is q × p and P2 is
m × p. Then

P′X̃′X̃P =

(
P′1X̃′X̃P1 P′1X̃′X̃P2
P′2X̃′X̃P1 P′2X̃′X̃P2

)
. (3.2)

Equations (3.1) and (3.2) together imply that P′1X̃′X̃P2 = 0, P′2X̃′X̃P2 = 0. Now

P′µ̂(ρ) =

(
P′1µ̂(ρ)
P′2µ̂(ρ)

)
=

(
Λ−1

q P′1X̃′ỹ(ρ)
0

)
=

(
η
0

)
. (3.3)
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Then η ∼ N(P′1β, σ
2Λq

−1). We write

Z =
1
σ

Λ−1
q η, θ =

1
σ

Λ−1
q P′1β, ω (ρ) =

v(ρ)
σ2 .

Then Z ∼ N(θ, Iq), and ω(ρ) ∼ χ2(n − p) independently of Z. Let us consider the quadratic loss
function

L
(
β̂, β

)
=

1
σ2

(
β̂ − β

)′
X′X

(
β̂ − β

)
. (3.4)

Theorem 1. Under the loss function (3.4), the restricted GB estimator β̂RG(ρ) has finite risk.

Proof: We observe that(
β̂RG(ρ) − β

)′
X′X

(
β̂RG(ρ) − β

)
= (µ̂G (ρ) − µ)′X̃′X̃ (µ̂G(ρ) − µ) .

Hence, under the loss function (3.4), the risk of GB estimator β̂RG(ρ) is given by

R
[
β̂RG(ρ), β

]
= E

(Z − θ)′(Z − θ) − 2ω(ρ)
(Z − θ)′Zφr(w(ρ))

Z′Z +
ω(ρ)2

Z′Z φ
2
r (w(ρ))


= q − 2E

[
ω(ρ)

(Z − θ)
′Zφr(w(ρ))

‖Z‖2

]
+ E

[
ω(ρ)2

‖Z‖2
φr

2(w(ρ))
]
. (3.5)

We observe that 0 ≤ φr(w(ρ)) ≤ w, so that

E
[
ω(ρ)2

‖Z‖2
φr

2(w(ρ))
]
≤ E

[
‖Z‖2

]
= q + ‖θ‖2 < ∞.

Further by Schwarz’s inequality

E
[
ω(ρ)

(Z − θ)′Zφr(w(ρ))
‖Z‖2

]
≤

[
E(Z − θ)′ (Z − θ) E

{
ω(ρ)2 φr

2 (w (ρ))

‖Z‖2

}] 1
2

≤
[
qE

[
‖Z‖2

]] 1
2

=
[
q
(
q + θ

′θ
)]2

< ∞, (3.6)

which proves the required result. 2

Since the estimators with uniformly smallest risk under a loss function usually do not exist, one of the
possible criteria for selecting an estimator is minimaxity, which minimizes the maximum risk. Since
the restricted OLS estimator is minimax, any estimator uniformly dominating it is also minimax. The
next theorem proves the minimaxity of GB estimator utilizing this logic.

Theorem 2. The restricted GB estimator is minimax whenever(
3 −

p − m
2

)
+

(p − m) (p − m − 2)
n + p − m − 2

≤ a ≤
p − m

2
+ 1. (3.7)
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Proof: Under the loss function (3.4) the difference between the risks of restricted GB estimator β̂RG(ρ)
and the OLS estimator bR(ρ) is given by

R
(
β̂RG(ρ), β

)
− R (bR(ρ), β) = E

[
ω(ρ)2

‖Z‖2
φ2

r (w(ρ)) − 2ω(ρ)
(Z − θ)′Zφr (w (ρ))

‖Z‖2

]
= E

[
ω(ρ)2

‖Z‖2
φ2

r (w(ρ))
]
− 2E

[
∂

∂Z′

{
Z
ω(ρ)φr(w(ρ))

‖Z‖2

}]
= E

[
ω(ρ)2

‖Z‖2
φ2

r (w(ρ)) − 2(q − 2)
ω(ρ)φr(w(ρ))
‖Z‖2

− 4φ′r (w (ρ))
]
. (3.8)

For notational convenience we write w(ρ) ≡ w and v(ρ) ≡ v. Let us write the density function

gw(λ) =

{
λ

q
2 −a(1−λ)c

}
{(1+λw)}

n
2∫ 1

0

{
λ

q
2 −a(1−λ)c

}
{(1+λw)}

n
2

dλ

, 0 < λ < 1.

Then

∂

∂w

[
φr(w)

w

]
= −

n
2

[
Egw

(
λ2

1 + λw

)
− Egw

(
λ

1 + λw

)
Egw (λ)

]
.

Since both λ and λ/(1 + λw) are monotone increasing functions of λ, we get Egw [λ2/(1 + λw)] ≥
Egw [λ/(1 + λw)]Egw (λ). This implies that (∂/∂w)[φr(w)/w] ≤ 0. Again

φ′r(w) =
φr(w)

w
+ w

∂

∂w

{
φr(w)

w

}
= Egw (λ) −

w n
2

[
Egw

(
λ2

1 + λw

)
− Egw

(
λ

1 + λw

)
Egw (λ)

]
.

Using integration by parts and after few algebraic manipulations, we get

φ′r(w) = c
[
Egw

(
λ2

1 − λ

)
− Egw

(
λ

1 − λ

)
Egw (λ)

]
. (3.9)

Since λ/(1 − λ) and λ are monotone increasing functions of λ, we obtain

Egw

(
λ2

1 − λ

)
≥ Egw

(
λ

1 − λ

)
Egw (λ).

Further 0 ≤ λ ≤ 1, implies that E fr(λ)(λ) − E fr(λ)(λ2) ≥ 0. If ϕ(χ2
r ) is a function of Chi-square variate

with r degrees of freedom, then E[χ2
rϕ(χ2

r )] = rE[ϕ(χ2
r+2)], and φr(w) and φr(w)/w are monotone in

opposite directions. Hence, we obtain

R
(
β̂RG(ρ), β

)
− R (bR(ρ), β) ≤ E

[
ω2φr(w) − 2(q − 2)ω

]
E

[
φr(w)
‖Z‖2

]
≤ (n − q)(n − q + 2)E

[
φr(w)

]
− 2(q − 2)E

[
φr(w)
‖Z‖2

]
. (3.10)
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Since φr(w) is an increasing function of w, an upper bound for φr(w) can be obtained when w is large.
For large w, we can approximate∫ ∞

0

∫ 1

0
λ

q
2−a+1(1 − λ)cσ−(n+1) exp

{
−

v
2σ2

}
exp

{
−
λvw
2σ2

}
dλdσ

≈ Γ

(q
2
− a + 2

)
Γ

(n − q
2

+ a − 2
) 1

2

(
2

vw

)( q
2−a+2)(2

v

)( n−q
2 +a−2)

,∫ ∞

0

∫ 1

0
λ

q
2−a(1 − λ)cσ−(n+1) exp

{
−

v
2σ2

}
exp

{
−λ

vw
2σ2

}
dλdσ

≈ Γ

(q
2
− a + 1

)
Γ

(n − q
2

+ a − 1
) 1

2

(
2

vw

)( q
2−a+1)(2

v

)( n−q
2 +a−1)

.

So that, φr(w) can be approximated as

φr(w) ≈

(
q
2 − a + 1

)(
n−q

2 + a − 2
) .

Thus, a sufficient dominance condition is

0 ≤
(q2 − a + 1)(
n−q

2 + a − 2
) ≤ 2 (q − 2)

n − q + 2
. (3.11)

Now (q/2 − a + 1) ≥ 0 implies that a ≤ q/2 + 1. Further(
q
2 − a + 1

)(
n−q

2 + a − 2
) ≤ (q − 2)

n−q
2 + 1

,

implies that

a ≥
(
3 −

q
2

)
+

q (q − 2)
n + q − 2

.

Hence, we obtain the required sufficient minimaxity condition for the GB estimator. For large n, the
minimaxity condition (3.7) reduces to

3 −
q
2
≤ a ≤

q
2

+ 1.

2

4. Simulation study

For studying the finite sample risk performance of restricted GB estimator, we carry out the simulation
study using R Software. The observations on response variable y are generated by using the SAR
model

y = ρWy + Xβ + u,
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where u ∼ N(0, σ2In).
In simulation study we compare the risks of feasible version of restricted feasible generalized

Bayes estimator (β̂RG) with the usual restricted feasible least squares (RFLS) estimator bR(ρ̂) =

µ̂(ρ̂) + µ̃.
We consider the following restricted feasible generalized Bayes (RFGB) estimator

β̂RG(ρ̂) =

[
1 − φa,c

(
µ̂ (ρ̂)′X̃′X̃µ̂(ρ̂)

σ̂2

)]
µ̂ (ρ̂) + µ̃.

For comparison purpose, we also consider the restricted feasible Stein-rule (RFSR) estimator

β̂S RG(ρ̂) =

[
1 −

q − 2
n − q + 2

v(ρ̂)
µ̂ (ρ̂)′X̃′X̃µ̂(ρ̂)

]
µ̂(ρ̂) + µ̃.

The matrix X has been generated from multivariate normal distribution MVN[(1, 3, 5, 4, 7, 5, 6, 4, 7, 4)’,
diag(0, 1.6, 0.7, 3.2, 1.5, 1, 2.8, 2, 1.4, 2.2)]. In the weight matrix W, the weights assigned to nearest
neighbour values are twice the weights assigned to the second nearest neighbour values and other
neighbour weights are taken as zero. For ensuring the property that the weight matrix is row stochas-
tic, initially we take wi,i+1 = 2, wi,i+2 = 1 and all other weights as zero. Then, we divide each element
of the selected matrix by the corresponding row sum (which is 3 in our case), so that the sum of
elements of each row of W is one. The values of ρ are selected in the range (1/Wmax, 1/Wmin), where
Wmax and Wmin are the maximum and minimum eigen value of W. The coefficients vector β is selected
so that it follows the linear restriction β2 + β3 = 1. The simulation study has been carried out for the
value of parameter c = 1, a = 0.5 and the results are depicted in Figures 1–4 (supplementary material)
and Tables 1–4. Figure 1 / Table 1 shows the percentage gain in efficiency of RFGB estimator over
RFLS estimator bR(ρ̂) for β′β = 1.745 when p = 5, β′β = 2.1019 when p = 10 and different values
of ρ in the range (-0.95, 0.95). Figure 2 / Table 2 shows the percentage gain in efficiency of RFGB
estimator over RFSR estimator for β′β = 1.745 when p = 5, β′β = 2.1019 when p = 10 and different
values of ρ. Figure 3 / Table 3 depicts the percentage gain in efficiency of RFGB estimator over RFLS
estimator for β′β = 6.29945 when p = 5, β′β = 6.810156 when p = 10 and different values of ρ.
Figure 4 / Table 4 shows percentage gain in efficiency of RFGB estimator over RFSR estimator for
β′β = 6.29945 when p = 5, β′β = 6.810156 when p = 10 and different values of ρ. For each setting
of parameters, the experiment is replicated 5,000 times. We have used maximum likelihood estimator
of ρ for evaluating RFLS and RFGB estimators.

The empirical mean squared error (EMSE) of any estimator δ̂ of δ is defined as

EMSE
(
d̂
)

=
1

5000

j=1∑
5000

(
d̂( j) − d

)′ (
d̂( j) − d

)
,

where d̂( j) is the estimator of d for the j−th replication. Further, for two estimators δ̂ and δ̃ of δ, the
percentage gain in efficiency of estimator δ̂ over δ̃ is defined as

%GE =
EMSE

(
δ̃
)
− EMSE

(
δ̂
)

EMSE
(
δ̂
) × 100.

The percentage gains in efficiency of RFGB estimator over RFLS estimator and RFSR estimator are
tabulated in Tables 1–4 for different values of n, p, β′β, and ρ.
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Table 1: Percentage gain in efficiency of RFGB estimator over RFLS with changing ρ

ρ
n

20 50 100 200

p = 5,

−0.95 87.652465 91.009943 92.980846 94.559246

β
′
β = 1.745

−0.75 86.816747 90.111241 92.401142 94.213808
−0.55 85.892035 88.73986 91.359453 93.488869
−0.35 84.820146 86.521877 88.886109 90.992238

0.05 81.963294 77.318969 70.855288 60.480241
0.25 80.147649 70.92225 60.433685 49.559817
0.45 78.307783 66.797965 59.82711 55.822992
0.65 76.988437 66.766127 63.831039 62.507009
0.75 76.787609 67.94647 66.155969 65.095276
0.95 78.395001 72.513772 71.750403 69.452348
−0.95 93.550795 93.051869 94.905196 95.744847

p = 10

−0.75 93.349477 92.602204 94.295924 95.352843

β
′
β = 2.1019

−0.55 93.060344 91.738786 93.034165 94.243812
−0.35 92.688015 90.354913 90.549374 91.213383

0.05 91.700071 85.674783 79.68406 68.717889
0.25 91.131797 82.945035 75.356991 67.159497
0.45 90.614072 81.302088 76.089054 74.992764
0.65 90.308848 81.728405 79.49427 80.835451
0.75 90.319279 82.760914 81.376767 82.826556
0.95 91.106411 87.054551 85.109257 85.691465

Table 2: Percentage gain in efficiency of RFGB estimator over RFSR estimator with changing (ρ)

ρ
n

20 50 100 200

p = 5

−0.95 82.923094 88.84156 91.77296 93.625716

β
′
β = 1.745

−0.75 81.973603 87.814849 91.080396 93.197345
−0.55 80.887227 86.163016 89.742814 92.180977
−0.35 79.598078 83.438066 86.495885 88.61416

0.05 76.078141 72.28575 62.832244 41.066217
0.25 73.881609 64.988875 51.951933 35.561192
0.45 71.764217 60.832483 54.189638 50.187771
0.65 70.533891 61.660405 60.108793 59.593103
0.75 70.548218 63.466654 63.134815 62.817361
0.95 72.83734 69.540567 70.141644 68.755346

p = 10

−0.95 63.784184 88.609957 93.509003 95.092562

β
′
β = 2.1019

−0.75 63.431254 87.973216 92.718718 94.62062
−0.55 62.724952 86.680816 91.063367 93.26248
−0.35 61.687076 84.614498 87.794245 89.476292

0.05 58.198412 78.066565 74.062091 60.816082
0.25 55.953324 74.742842 69.65128 61.821461
0.45 54.063984 73.209599 71.549233 72.366209
0.65 54.045426 74.23149 76.008274 79.182432
0.75 55.197672 75.55216 78.235483 81.385816
0.95 59.635264 81.133665 82.263486 84.352788

From the numerical results, we draw the following conclusions:

1. The RFGB estimator outperforms the restricted RFLS for all the selected parametric settings and
restricted RFSR estimators in most of the selected parametric settings. The exceptional parametric
values for which RFSR estimator dominates RFGB estimator are n = 200, p = 5, ρ = 0.05, 0.25.

2. From Figure 1 (supplementary material) and Table 1, we observe that for both n = 20 and n =
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Table 3: Percentage gain in efficiency over FLS with changing ρ

ρ
n

20 50 100 200

p = 5

−0.95 88.250714 85.331541 88.357915 88.237576

β
′
β = 6.29945

−0.75 87.280955 84.165149 86.821451 86.933414
−0.55 86.086996 81.941857 83.574269 83.424748
−0.35 84.660808 78.541708 77.84365 76.181153

0.05 81.075901 68.320117 57.696297 45.772802
0.25 79.04567 62.868848 48.676744 34.593974
0.45 77.193568 59.21098 46.204104 36.247221
0.65 76.078811 58.552617 49.679866 44.080881
0.75 76.063934 59.350188 52.759539 48.219291
0.95 78.286289 64.428599 61.277897 54.571567
−0.95 91.035077 76.382531 81.356926 82.434587

p = 10

−0.75 91.054064 76.329566 79.529575 80.673056

β
′
β = 6.810156

−0.55 91.015573 75.528495 76.211548 76.29519
−0.35 90.835716 74.147884 71.258038 67.899974

0.05 90.195831 70.663943 59.092948 41.111684
0.25 89.827964 69.515726 56.170427 40.60945
0.45 89.541704 69.690507 57.862524 51.794662
0.65 89.510794 71.929057 63.310748 63.604441
0.75 89.694623 74.097215 66.934067 68.359051
0.95 90.946863 82.663914 75.578299 75.556115

Table 4: Percentage gain in efficiency over SR estimator with changing ρ

ρ
n

20 50 100 200

p = 5

−0.95 82.263614 75.762608 81.211744 79.709125

β
′
β = 6.29945

−0.75 81.273469 74.47021 78.716413 77.191035
-0.55 79.950618 71.365079 72.864911 69.425762
-0.35 78.326638 66.463705 61.947065 51.094821
0.05 74.264449 53.03775 25.743741 −31.970086
0.25 72.063518 47.744477 18.176582 −27.214677
0.45 70.215858 46.239419 25.182331 5.164118
0.65 69.394017 48.748694 37.69438 29.676562
0.75 69.667279 51.031933 44.066218 38.18759
0.95 72.708087 58.349346 57.17885 48.729913
−0.95 50.916155 53.247087 71.684003 75.747382

p = 10

−0.75 52.027709 54.314679 68.846558 73.036032

β
′
β = 6.810156

−0.55 53.116361 53.985354 63.563583 65.938524
−0.35 53.667719 52.820521 55.74647 51.497067

0.05 53.709882 50.586393 39.290724 6.996654
0.25 53.341976 51.173714 38.519666 16.873713
0.45 52.968889 53.917705 44.651203 40.432942
0.65 53.120161 59.268304 54.438822 58.156965
0.75 54.289198 63.114882 59.832638 64.383209
0.95 59.266461 75.654172 71.174588 73.133859

50, the percentage gain in efficiency of RFGB estimator over RFLS estimator is maximum at
ρ = −0.95, and decreases gradually up to ρ ≈ 0.65 (n = 20, p =5 and 10), and ρ ≈ 0.5 (n = 50,
p = 5, 10) and then starts increasing. Further, for n = 100 and 200, the percentage gain in efficiency
of RFGB estimator over RFLS estimator is maximum at ρ = −0.95, decreases gradually up to
ρ ≈ 0.45 (n = 100, p = 5), ρ ≈ 0.35 (n = 100, p = 10), ρ ≈ 0.25 (n = 200, p = 5) and ρ ≈ 0.15
(n = 200, p =10), then starts increasing with increasing ρ.
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3. It can be seen from Figure 2 (supplementary material) and Table 2 that for both n = 20 and 50 the
percentage gain in efficiency of RFGB estimator over RFSR estimator is maximum at ρ = −0.95
and decreases gradually up to ρ ≈ 0.65 (n = 20, p = 5), ρ ≈ 0.55 (n = 20, p = 10), ρ ≈ 0.5
(n = 50, p = 5) and ρ ≈ 0.45 (n = 50, p = 10), then starts increasing with increasing ρ. For
n = 100 and 200, the percentage gain in efficiency of RFGB estimator over RFSR estimator is
maximum at ρ = −0.95, decreases gradually up to ρ ≈ 0.35 (n = 100, p = 5), ρ ≈ 0.3 (n = 100,
p = 10), ρ ≈ 0.25 (n = 200, p = 5) and ρ ≈ 0.15 (n = 200, p = 10), then starts increasing with
increasing ρ.

4. For fixed n, in all the cases, the gain in efficiency increases as p increases from 5 to 10.

5. For fixed n and p, as β′β increases the gain in efficiency usually decreases.

6. An interesting observation for sample size n = 50 is that for p = 5, the gain in efficiency of
RFGB estimator over both RFLS estimator and RFSR estimator usually lower for ρ > 0 than the
corresponding gain in efficiency for ρ < 0 whereas for p = 10, the gain in efficiency for ρ > 0 is
more than that corresponding to negative value of ρ.

7. For a fixed parametric setting, the gain in efficiency of RFGB estimator over RFLS estimator is
more than corresponding gain in efficiency of RFGB estimator over RFSR estimator.

5. Concluding remarks

With the objective of achieving robustness with respect to prior distribution and satisfying minimaxity
property, a family of RFGB estimators for the regression coefficients vector of a SAR model has been
derived in the presence of a set of linear restrictions binding the coefficients vector. The results of
the simulation study show that the RFGB estimator outperforms both, the RFLS estimator and RFSR
estimator over a wide range of parametric settings. The work on extending the results of the paper
for panel data spatial autoregressive models, which also incorporates spatial autoregressive stochastic
frontier model for spatio-temporal data, is in progress.
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