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Abstract
The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood,

least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown param-
eters of the power Lindley distribution. Lindley’s approximation and Markov chain Monte Carlo techniques are
utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The per-
formances of the proposed estimators are compared based on simulated samples. The waiting times of research
articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing
distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian in-
formation criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a
better fit for the data than other distributions.

Keywords: power Lindley distribution, maximum likelihood estimator, least squares estimator,
maximum product spacings estimator, Bayes estimator, goodness-of-fit test

1. Introduction

Lindley distribution indexed by a scale parameter was first introduced by Lindley (1958) in the context
of Bayesian theory, as a counter example of fiducial statistics. Ghitany et al. (2008) discussed various
statistical and mathematical properties of the Lindley distribution in order to advocate its use as a
lifetime model over exponential distribution. Subsequently, the Lindley distribution has been used by
many authors in modelling lifetime data under different scenarios, see Ali et al. (2013), Al-Mutairi
et al. (2013), Krishna and Kumar (2011), Sharma et al. (2016a), and references cited therein. The
probability density function (pdf) of the Lindley distribution is given by

f (x; β) =
β2

1 + β
(1 + x) e−βx, x > 0, β > 0. (1.1)

The Lindley distribution is inadequate to model some real phenomenon since it is not much flex-
ible to model various skewed data sets with a scale parameter only. In this view, Gupta and Kundu
(2009) discussed the importance of the shape parameter in modelling and gave comprehensive review
on different methods to introduce a shape/skewness parameter in an arbitrary probability distribution.
Two methods namely exponentiation and power transformation are important choices among others
and used to develop more flexible distribution with an added shape parameter. In the first method,
1 Corresponding author: Department of Mathematics, Institute of Infrastructure, Technology, Research and Management

(IITRAM), Ahmedabad, India. E-mail: vikasstats@rediffmail.com

Published 31 May 2017 / journal homepage: http://csam.or.kr
c⃝ 2017 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



194 Vikas Kumar Sharma, Sanjay Kumar Singh, Umesh Singh

a constant as a power of the cumulative distribution function (cdf) of a baseline distribution is in-
troduced, i.e., F(x) = [G(x)]α, where G(x) is the baseline distribution function and α (> 0) is the
proportionality constant. The models obtained are called proportional reverse hazard rate models. In
the second method, we apply a power transformation to the given random variable i.e., Y = Xα, where
Y is the baseline random variable. Weibull distribution (WD) is a good example of a power trans-
formed model for exponential distribution. Using these approaches, two extensions of the Lindley
distribution known as power Lindley distribution (PLD) and generalized Lindley distribution (GLD)
are proposed by Ghitany et al. (2013) and Nadarajah et al. (2011), respectively. A random variable
X = Y1/α is said to follow the PLD, if Y follows the Lindley distribution. The pdfs of GLD and PLD
are respectively given by

fG (x;α, β) =
αβ2 (1 + x)

1 + β

(
1 − 1 + β + βx

1 + β
e−βx

)α−1

e−βx, x > 0, β > 0, α > 0, (1.2)

fP (x;α, β) =
αβ2

1 + β
(1 + xα) xα−1e−βxα , x > 0, β > 0, α > 0. (1.3)

The GLD is considered by many authors under various contexts. Singh et al. (2013, 2014b)
discussed Bayes estimation of parameters of the GLD in presence of complete and progressively
censored samples respectively. Okwuokenye and Peace (2015) compared two GLD based on the
size and power of the test of hypotheses on parameters. Gui and Chen (2016) developed inverse and
modified inverse moment estimators of the GLD parameters.

The PLD is quite flexible to accommodate common ageing classes of increasing, decreasing and
decreasing-increasing-decreasing hazard rates. Ghitany et al. (2013) illustrated the applicability of
the PLD through real data modelling and showed that PLD fits better than other two-parameter dis-
tributions such as gamma, Weibull, Gompertz. In their work, Ghitany et al. (2015) discussed the
maximum likelihood estimation (MLE) for strength-stress reliability based on a complete sample of
observations from PLD. Singh et al. (2014a) discussed MLE as well as Bayes estimation under hy-
brid censoring schemes. PLD has been given less attention despite it being a parsimonious model with
nice properties such as closed form distribution and survival functions and flexible shapes of pdf and
hazard functions as well as being a good competitor of WD and gamma distributions (GD). Therefore,
this article discusses various classical and Bayes estimators to estimate unknown parameters of PLD
and its application to waiting time data.

In the lieu of the above considerations, we discuss MLE, least squares estimator (LSE), maxi-
mum product spacings (MPS), and Bayes estimation methods for the PLD and studied their behav-
iors with respect to varying sample size and various combinations of parameter values. Both non-
informative and informative (gamma) priors are used for Bayesian estimation. Bayes estimators are
not in closed forms; therefore, we propose the use of Lindley approximation and Markov chain Monte
Carlo (MCMC) techniques for Bayesian calculations.

The rest of the paper has been organized in the following sections. In Section 2, some properties
of PLD are derived. Classical and Bayes estimators of PLD parameters are constructed in Section
3 and 4, respectively. In Section 5, the proposed estimators are compared using simulated samples
from PLD. In Section 6, two data sets on waiting times to accept research articles for publication
in statistics journals noted from volumes published in the 2012 of Journal of Statistical Planning
and Inference (JSPI) and Computational Statistics and Data Analysis (CSDA) are fitted to various
statistical distributions and then analyzed with the discussed procedures. Finally, the conclusions are
given in Section 7.
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2. Some properties of power Lindley distribution (PLD)

2.1. Moments and mean/median deviation

The rth moment, derived by Ghitany et al. (2013), for the PLD is given by

E (Xr) =
αβ2

β + 1
rΓ (r/α) (α (β + 1) + r)

α3β
r
α+2

.

Mean deviation (MD) is the expected value of the absolute deviation of X about A, E fx [X − A] =
MDA. It measures the scatteredness of a distribution function about an arbitrary number A. Its value
is large when there is a great scattering and small when there is a great concentration about A. MD
is generally taken about the mean; however, it is least when taken about the median. MD about mean
(X̄) and median (X̃) can be obtained as,

MDX̄ =

∫ ∞

0

∣∣∣x − X̄
∣∣∣ dF(x) = −2X̄

(
1 +

β

1 + β
X̄α

)
e−βX̄α

+ 2
αβ2

β + 1
I
(
α, β, 1, X̄

)
,

MDX̃ =

∫ ∞

0

∣∣∣x − X̃
∣∣∣ dF(x) = −X̄ + 2

αβ2

β + 1
I
(
α, β, 1, X̃

)
,

where I (·, ·, ·, ·) is given by Lemma 1 in Appendix.

2.2. Conditional moments

The rth conditional moment can be defined as

E (Xr |X > x) =
1

P (X > x)

∫ ∞

x
xr f (x) dx =

1
1 − F (x)

αβ2

1 + β
I (α, β, r, x) ,

where F(·) is cdf of the PLD. However, the mean residual lifetime function is E(X1|X > x) − x. The
mean residual life function plays an important role in many fields such as engineering, medicine, life
insurance, and demographics. The references from Abdous and Berred (2005), Govil and Aggarwal
(1983) provide more details and application. The mean residual life function is defined as

e(x) = E (X − x | X > x) =
1

1 − F (x)

∫ ∞

x
1 − F (x) dx.

On some simplifications, we get

e(x) =
(1 + β) Γ (1/α, βxα) + Γ ((α + 1) /α, βxα)

αβ
1
α (1 + β + βxα) e−βxα

,

where Γ(a, x) =
∫ ∞

x ya−1e−ydy is the complimentary incomplete gamma function.

2.3. Moment generating function

The moment generating function is simply defined

Mx (t) =
αβ2

1 + β

∫ ∞

0
xα−1e−βxα+txdx +

αβ2

1 + β

∫ ∞

0
xαe−βxα+txdx.
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By Lemma 2 (Appendix), we have

Mx (t) =
αβ2

1 + β
[
G(α, β,−t, α, 1) +G(α + 1, β,−t, α, 1)

]
=

1

β
1
α−1 (1 + β)

[
H2,0

0,2

[
−tβ

1
α

∣∣∣∣(0,1)(1, 1
α )

]
+ H2,0

0,2

[
−tβ

1
α

∣∣∣∣(0,1)( 1
α+1, 1

α )
]]
.

2.4. Entropy measures

The entropy measure is used to measure the amount of uncertainty associated with a random variable
X entertained in scientific fields. The most popular entropy measures are Rényi entropy and Shannon
entropy. The Rényi entropy is defined as

IR =
1

1 − γ log
[∫

f γ (x) dx
]
, γ > 0 (, 1).

Substituting the pdf of PLD in above equation, we obtain

IR =
1

1 − γ log

 eβγ

αβγ

∞∑
k=0

(−1)k
(
(αγ − γ − α + 1)/α

k

)
Γ ((2αγ − γ − kα + 1)/α, βγ)

(βγ)(2αγ−γ−α+1)/α−k

 .
Shannon’s entropy is defined as IS = −E f [log( f (x))] = −

∫ ∞
0 log( f (x)) f (x)dx. On simplifications, we

get

IS = − log
[
αβ2

1 + β

]
− eβ

1 + β

[
eβ + E1(β)

]
+

2 + β
1 + β

− (α − 1)
β2

1 + β
[
I(1, β) + I(2, β)

]
,

where En(z) =
∫ ∞

1 (e−zt/tn)dt is the exponential integral and I(a, b) is defined by Lemma 3 in Ap-
pendix.

3. Classical estimation of the parameters

3.1. Estimation based on likelihood

Let x1, x2, . . . , xn be an independent and identical random sample of size n from the PLD (1.3). The
log-likelihood function based on observed sample x = {x1, x2, . . . , xn} is given by

log L = n ln(α) + 2n ln(β) − n ln(1 + β) +
n∑

i=1

ln(1 + xαi ) + (α − 1)
n∑

i=1

ln(xi) − β
n∑

i=1

xαi . (3.1)

The MLEs α̂ and β̂ of α and β, respectively, can be obtained as the simultaneous solution of the
following two non-linear equations:

α

n
+

n∑
i=1

xαi ln(xi)
1 + xαi

+

n∑
i=1

ln(xi) − β
n∑

i=1

xαi ln(xi) = 0, (3.2)

n(β + 2)
β(β + 1)

−
n∑

i=1

xαi = 0. (3.3)
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Figure 1: Plots of likelihood equations (left) and likelihood profile (right) for α and β.

By solving the quadratic equation (3.5) in β, the MLE β̂ of β can be uniquely determined as follows,

β̂ (α̂) =
−

(∑n
i=1 xα̂i − n

)
+

√(∑n
i=1 xα̂i − n

)2
+ 8n

∑n
i=1 xα̂i

2
∑n

i=1 xα̂i
,

where α̂ is the solution of the following equation

α

n
+

n∑
i=1

xαi ln(xi)
1 + xαi

+

n∑
i=1

ln(xi) − β̂ (α̂)
n∑

i=1

xαi ln(xi) = 0. (3.4)

In order to solve above equation, one can apply a suitable iterative procedure such as the Newton-
Raphson method.

3.1.1. Existence and uniqueness of the MLEs

It is of interest to show the existence and uniqueness of the MLEs. Its analytical demonstration
is complicated since Fisher’s information includes intractable integrals. Therefore, we investigate
the existence and uniqueness of the MLEs numerically based on the superimposed curves of log-
likelihood equations. The steps that we followed are:

Step 1. Without loss of generality, we simulate a random sample of size 25 from the PLD with α = 2
and β = 2.

Step 2. The curves of the log-likelihood equations, d log L/dα = 0 and d log L/dβ = 0 for α and β
are sketched in Figure 1.

Step 3. From Figure 1, it can be seen that there exists a intersection point (α̂ = 2.1328, β̂ = 1.5232),
which means that the solution of the equations exists and is unique.

Step 4. Now we trace the log-likelihood profile with respect to the parameters, see the right part of
Figure 1 that indicates the intersection point maximizes the log-likelihood function of the
parameters α and β.
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Step 5. The previous steps indicate that the MLEs of the parameters, α and β exist and are unique.

Algorithm 1 is also used for various combinations of parameters with varying sample sizes; in addi-
tion, the MLEs of the parameters are found to exist and be unique.

3.2. Estimation based on product spacings

The MPS method was proposed by Cheng and Amin (1983). This method is based on an idea that
the differences (spacings) of the consecutive points should be identically distributed. The difference
is defined as

Di =

∫ x(i)

x(i−1)

f (x, α, β) dx, i = 1, 2, . . . , n + 1, (3.5)

where F(x(0), α, β) = 0 and F(x(n+1), α, β) = 1. The MPS estimators α̂PS and β̂PS of α and β are
obtained by maximizing the geometric mean of the differences. The geometric mean of the differences
is given as

G = n+1

√√√n+1∏
i=1

Di. (3.6)

Substituting (1.3) in the equation above and taking logarithm, we have

log G (α, β) =
1

n + 1

n+1∑
i=1

log
[(

1 +
β

1 + β
xα(i−1)

)
e−βxα(i−1) −

(
1 +

β

1 + β
xxα(i)

)
e−βxα(i)

]
. (3.7)

The MPS estimators α̂PS and β̂PS of α and β can be obtained by maximizing the log G (α, β) in (3.7).

3.3. Least squares estimators (LSE)

Let x(1), x(2), . . . , x(n) be the ordered sample of size n follow the PLD. Then, the expectation

E
[
F

(
X(i)

)]
=

i
n + 1

, i = 1, 2, . . . , n. (3.8)

The LSEs α̂LS and β̂LS of α and β are obtained by minimizing

Z (α, β) =
n∑

i=1

(
F

(
x(i)

) − i
n + 1

)2

. (3.9)

By substituting the cdf of the PLD in (3.9), we have

Z (α, β) =
n∑

i=1

(
n − i + 1

n + 1
−

(
1 +

β

1 + β
xα(i)

)
e−βxα(i)

)2

. (3.10)

The LSEs α̂LS and β̂LS of α and β can be obtained by minimizing the Z (α, β) in (3.10). The non-
linear equations can be routinely solved using Newton’s method. There are many subroutines in
R-software such as optim( ) and nlm( ) that are tailored to solve the non-linear optimization problems.
We recommend the use of the nlm( ) command to optimize the above problems.
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4. Bayes estimation of the parameters

In Bayesian set-up, unknown parameters involved in any model are considered to be random variables
instated of fixed constants. This idea is logical since the parameters of any population cannot remain
the same throughout the study. The variation in the parameters can be incorporated by assuming prior
distributions of unknown parameters. Here, we assume that the parameters α and β follow independent
gamma prior distributions of the following forms:

π1(α) =
ab1

1

Γ(b1)
αb1−1e−a1α, α > 0, a1, b1 > 0, (4.1)

π2(β) =
ab2

2

Γ(b2)
βb2−1e−a2β, β > 0, a2, b2 > 0, (4.2)

where a1, b1, a2, and b2 are called hyper-parameters. The joint prior distribution of α and β is given
by

π(α, β) =
ab1

1 ab2
2

Γ(b1)Γ(b2)
αb1−1βb2−1e−a1α−a2β.

The joint posteriors of α and β is obtained as follows,

π
(
α, β|x

)
= K

αn−b1−1β2n−b2−1

(1 + β)n

n∏
i=1

(
1 + xαi

) n∏
i=1

xα−1
i e−β(

∑n
i=1 xαi +a2)−a1α, (4.3)

where K is the normalizing constant. Bayes estimates of the parameters under the squared error
loss are the means of their respective marginal posteriors. Thus, Bayes estimators of α and β are
respectively given by

α̂Bayes = K
∫ ∞

0

∫ ∞

0

αn−b1β2n−b2−1

(1 + β)n

n∏
i=1

(
1 + xαi

) n∏
i=1

xα−1
i e−β(

∑n
i=1 xαi +a2)−a1αdαdβ, (4.4)

β̂Bayes = K
∫ ∞

0

∫ ∞

0

αn−b1−1β2n−b2

(1 + β)n

n∏
i=1

(
1 + xαi

) n∏
i=1

xα−1
i e−β(

∑n
i=1 xαi +a2)−a1αdαdβ. (4.5)

The above expressions are not easy to calculate analytically; therefore, we propose the use of Lindley’s
approximation and MCMC techniques to obtain Bayes estimates for the parameters.

4.1. Lindley’s approximation

In 1980, Lindley provided asymptotic solution for the ratio of two integrals generally encountered in
Bayesian estimation (Lindley, 1980). Many authors have proposed to use Lindley’s approximation
to obtain Bayes estimates of the parameters for various lifetime distributions and references cited
(Sharma et al., 2015, 2016b). The ratio of integrals occurs in Bayesian analysis is given by

I
(
x
)
= E

(
u (Θ) |x

)
=

∫
u (Θ) exp{L (Θ) + ρ (Θ)} dΘ∫

exp{L (Θ) + ρ (Θ)} dΘ
, (4.6)
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where Θ = {θ1, θ2, . . . , θm}, u (Θ) = any function of Θ, L (Θ) = log-likelihood function, and ρ (Θ) =
log of joint prior of Θ. For large sample and under some regularity conditions, the above expression
can be approximated by the following expansion

I
(
x
)
≈ u +

1
2

m∑
i=1

m∑
j=1

(
ui j + 2uiρ j

)
σi j +

1
2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

Li jkulσi jσkl.

If u (α, β) = α, then u1 = 1, u2 = u12 = u21 = u22 = u11 = 0. Therefore, the Bayes estimate of α is
then defined as:

α̂LD = α̂ML + σ11ρ1 + σ12ρ2 + 0.5
{
L111σ

2
11 + 3L112σ11σ12 + L222σ12σ22

}
.

If u (α, β) = β, then u2 = 1, u1 = u12 = u21 = u22 = u11 = 0. Therefore, the Bayes estimate of β can be
calculated by the following formula:

β̂LD = β̂ML + σ21ρ1 + σ22ρ2 + 0.5
{
L222σ

2
22 + L112

(
σ11σ22 + 2σ2

12

)
+ L111σ11σ12

}
.

4.2. Markov chain Monte Carlo (MCMC) methods

Lindley’s approximation method is unfeasible for higher dimension models as well as inefficient for
a sampler sample size. In such cases, the MCMC iterative methods are found very useful. These
methods produce a Markov chain of values that constitute sample draws from posterior distribution;
consequently, a sample based inference is drawn. The Gibbs sampler and Metropolis-Hastings (MH)
algorithm are basic MCMC methods and frequently used in Bayesian statistics (Gelfand and Smith,
1990; Hastings, 1970). To implement the Gibbs algorithm, the full condition distributions of the
parameters α and β are given by

π11

(
α | β, x

)
∝ αn−b1−1 exp

α  n∑
i=1

log (xi) − a1

 − β  n∑
i=1

xαi

 n∏
i=1

(1 + xαi ), (4.7)

π22

(
β | α, x

)
∝ β2n−b2−1

(1 + β)n e−β(
∑n

i=1 xαi +a2) (4.8)

respectively. The full conditional distributions are not in standard distributional forms; therefore, we
propose the use of MH algorithm to draw the random sample from the full conditionals. A hybrid
algorithm of Gibbs and MH samplers consists of the following steps:

Step 1. Set initial values α0 and β0 for α and β, respectively.

Step 2. Using initial values α0 and β0, generate candidate points {αc, βc} respectively from the pro-
posal densities q1(αc|α0) and q2(βc|β0), where q(Θc|Θ0),Θ = {α, β} is the probability of re-
turning a value of Θc given a previous value of Θ0. Here, we propose the use of asymptotic
distributions of MLEs as proposal densities.

Step 3. Generate a uniform variate on range 0 to 1, i.e., u ∼ U(0, 1).

Step 4. Calculate Hastings-ratio using candidate point αc and previous point α0 as given by

ρ1

(
αc

∣∣∣α0
)
=

π11

(
αc

∣∣∣β0, x
)

q1

(
α0

∣∣∣αc
)

π11

(
α0

∣∣∣β0, x
)

q1

(
αc

∣∣∣α0
)  .
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Step 5. Accept the candidate point as

α =

{
αc, if u ≤ min

(
1, ρ1

(
αc

∣∣∣α0
))
,

α0, otherwise

and set α0 = α.

Step 6. Now using the current point α0, calculate Hastings-ratio for the parameter β as given by

ρ2

(
βc

∣∣∣β0
)
=

π22

(
βc

∣∣∣α0, x
)

q2

(
β0

∣∣∣βc
)

π22

(
β0

∣∣∣α0, x
)

q2

(
βc

∣∣∣β0
)  .

Step 7. Accept the candidate point as

β =

{
βc, if u ≤ min

(
1, ρ2

(
βc

∣∣∣β0
))
,

β0, otherwise

and set β0 = β.

Step 8. Repeat Steps 2–9, M(= 10, 000) times and obtain posterior sample of size M for the parame-
ters α and β.

Step 9. Bayes estimates of α and β under squared error loss, can be obtained as the mean of the
simulated samples from their posteriors. Thus, the formulae to obtain Bayes estimates of α
and β are given by α̂MC = 1/(M − M0)

∑M
i=M0

αi and β̂MC = 1/(M − M0)
∑M

i=M0
βi. Here, M0

(burn-in period) is taken to be 1,000.

5. Comparison of the proposed estimators

In this section, we study the behavior of the proposed estimator for the PLD parameters α and β with
varying sample sizes and different combinations of parameters. The performances of the estimators
are compared based on the mean squared error (MSE) using simulated samples. For this purpose, we
simulate the random samples of different sizes from PLD using the inversion method; please refer to
Sharma et al. (2016a) for the algorithm and R-codes used for this purpose. For each generated sample,
we compute the proposed estimates for the PLD parameters. We repeat the process 1,000 times
to average the long run performance of the proposed estimators; in addition, the average estimates
along with MSEs are also recorded. Under Bayesian estimation, we consider the Gamma(a1, b1) and
Gamma(a2, b2) prior for the unknown parameters α and β, respectively. We take prior to mean equal
to the guess (true) values of the parameters with variance. In this study, we take the prior variances
equal to 1 (small) and 100 (large) known as Gamma-I and Gamma-II priors, respectively. Under
non-informative prior, the hyper-parameters are taken to be zero.

We generate 10,000 MCMC draws from the posterior using MCMC algorithms. The asymptotic
posterior is taken to be the proposal density for simulation and MLEs are considered initial guesses
under the MH algorithm. We also study convergences of the MCMC chains using cumulative means
and trace plots; consequently, it is found that the MCMC chains converge rapidly to stationary dis-
tributions. Furthermore, we take every second point from the chains so that autocorrelation can be
reduced to a certain level. Tables 1 and 2 summarizes the simulation results. However, we only show
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Table 1: Average estimates (in first row of each cell) and MSE (in second row of each cell) of the classical
estimators for n = 30

α β
α β

MLE LSE MPS MLE LSE MPS
α̂ML α̂LS α̂PS β̂ML β̂LS β̂PS

1
1 1.048 0.992 0.949 1.009 1.021 1.031

0.026 0.032 0.022 0.032 0.032 0.028

4 1.053 0.993 0.947 4.384 4.124 3.850
0.029 0.036 0.025 1.181 1.473 0.642

2
1 2.096 1.983 1.898 1.009 1.021 1.031

0.102 0.124 0.088 0.032 0.032 0.028

4 2.105 1.987 1.894 4.384 4.124 3.850
0.119 0.143 0.099 1.181 1.473 0.642

3
1 3.144 2.975 2.846 1.009 1.022 1.031

0.229 0.279 0.198 0.032 0.032 0.028

4 3.158 2.979 2.841 4.384 4.124 3.851
0.269 0.321 0.224 1.181 1.473 0.641

4
1 4.192 3.966 3.795 1.009 1.021 1.031

0.408 0.498 0.352 0.032 0.032 0.028

4 4.211 3.973 3.787 4.384 4.124 3.850
0.478 0.570 0.398 1.181 1.474 0.642

MLE = maximum likelihood estimate; LSE = least squares estimate; MPS = maximum product spacings.

Table 2: Average Bayes estimate and mean squared error of parameters α and β with varying parameters and
n = 30

α, β
Non-informative Gamma-1 Gamma-2

α̂LD β̂LD α̂MC β̂MC α̂LD β̂LD α̂MC β̂MC α̂LD β̂LD α̂MC β̂MC

1, 1 1.039 1.018 1.041 0.999 1.036 1.018 1.038 0.999 1.038 1.018 1.041 0.999
0.025 0.032 0.025 0.031 0.023 0.029 0.023 0.029 0.024 0.032 0.025 0.031

1, 3 1.064 3.298 1.025 3.109 1.045 3.155 1.017 3.050 1.064 3.297 1.025 3.108
0.036 0.656 0.026 0.358 0.027 0.203 0.022 0.176 0.036 0.649 0.026 0.355

2, 1 2.039 1.008 2.082 0.999 2.027 1.009 2.072 1.001 2.039 1.008 2.082 0.999
0.079 0.033 0.100 0.031 0.063 0.030 0.082 0.028 0.079 0.033 0.099 0.031

2, 3 2.243 3.490 2.051 3.109 2.194 3.337 2.029 3.048 2.242 3.488 2.050 3.108
0.287 1.331 0.103 0.358 0.193 0.548 0.077 0.172 0.286 1.321 0.103 0.354

3, 1 2.738 1.035 3.123 0.999 2.699 1.039 3.095 1.003 2.737 1.035 3.122 0.999
0.124 0.031 0.225 0.031 0.123 0.027 0.152 0.027 0.124 0.030 0.224 0.031

3, 3 3.722 3.863 3.076 3.109 3.622 3.693 3.035 3.045 3.721 3.861 3.075 3.108
1.818 3.499 0.233 0.358 1.269 1.979 0.139 0.168 1.812 3.482 0.231 0.354

the tables for sample size 30 due to space restrictions. The performances of the proposed estimators
can be described as:

• All the estimators show the property of consistency, i.e., the MSE decreases as sample size in-
creases.

• In all the considered cases (classical and Bayesian), the MSE of the estimator(s) of α and β increases
as parametric value of α and β increase while n and other parameters are maintained as fixed.

• In classical estimation, the MSE of (all) the estimator(s) of α increases as the parametric value
β increases, while sample size n and parameter α are maintained as fixed. However, no specific
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Table 3: LRT for fitting LD and PLD based on real data sets

JSPI CSDA
LD PLD LD PLD

α̂ - 1.1822 - 1.3864
β̂ 0.1455 0.0898 0.1708 0.0660

KS 0.0953 0.0506 0.1614 0.0544
p-value 0.0126 0.4733 0.0000 0.5184
log (ℓ) 951.1600 943.0200 718.9000 695.8600
LRT 16.2878 46.0688

p-value 5.44E−05 1.14E−11
Decision Reject H0 Reject H0

JSPI = Journal of Statistical Planning and Inference; CSDA = Computational Statistics and Data Analysis; LD = Lindley
distribution; PLD = power Lindley distribution; KS = Kolmogorov-Smirnov; LRT = likelihood ratio test.

pattern has been found in the MSE of the estimator βwith increasing αwhen n and β are maintained
as fixed.

• Product spacings estimators are more efficient than MLE and LSE in classical estimation. In gen-
eral, the MSEs of the above three estimators can be ordered as MSE (MPS) < MSE (MLE) < MSE
(LSE).

• Bayes estimators obtained with the MCMC technique are superior to Bayes estimators obtained
using Lindley’s approximation.

• Bayes estimators obtained using Lindley’s approximation are worse if n is small and with large
parametric values of α and β, i.e., in case of small sample size, the Lindley’s approximation tech-
nique cannot be recommended.

• Bayes estimators obtained under the assumption of the Gamma priors are superior to those obtained
under the non-informative priors.

• The MSE of Bayes estimators increase as prior variance increases.

• Bayes estimators obtained using the MCMC technique under the assumption of gamma priors with
small variances are the most efficient estimators among all proposed Bayes estimators.

6. Application: waiting time to publication in statistical journal

The waiting time of the research article to be accepted (WTA) for its publication in a journal is the
time interval between the submission date and the acceptance date of the article. The analysis of such
data is especially significant for young researchers who are in the early age of their career and need to
protect and give a height to their career. There are many reasons by which the article may take more
time for publication such as a busy schedule for reviewers and editors, a long queue of articles. The
WTA can be governed through probability law because it is random and cannot be pre-determined.
This section proposes the use of the PLD for the WTA data.

We collected the data on WTA for research articles published in JSPI and CSDA in 2012. The
WTA is computed as

WTA = Acceptance date − Submission date.
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Figure 2: Fitted density function of power Lindley distribution and Lindley distribution for waiting times (in
months) data for JSPI (a) and CSDA (b). JSPI = Journal of Statistical Planning and Inference; CSDA = Compu-

tational Statistics and Data Analysis.

It is of interest to compare the applicability of the PLD with its sub-model for given sets of WTA
data. For this purpose, we use likelihood ratio test to test the null hypothesis H0 : α = 1 (X ∼ LD(β))
against H1 : α , 1 (X ∼ PLD(α, β)). Table 3 shows that the PLD fits well with the data over its
sub-model. The same can also be observed from the fitted densities plots presented in Figures 2 (a)
and (b). We next access the goodness-of-fit of the PLD with two other parameter distributions defined
by the following density functions.

• Generalized exponential distribution (GED), f (x) = αλe−λx(1 − e−λx)α−1, x > 0, α, λ > 0,

• Weibull distribution (WD), f (x) = θpxp−1e−θxp
, x > 0, α, p > 0,

• Gamma distribution (GD), f (x) = (θα/Γ(α))xα−1e−θx, x > 0, α, θ > 0,

• Flexible Weibull (FW), f (x) = (α + β/x2) exp(αx − β/x) exp(− exp(αx − β/x)), x > 0, α, β > 0,

• Weighted Lindley (WL), f (x) = [θc/((θ + c)Γ(c))]xc−1(1 + x)e−θx, x > 0, θ, c > 0,

• Inverse Weibull (IW), f (x) = αλx−α−1e−λx−α , x > 0, α, λ > 0,

• Generalized inverted exponential distribution (GIED), f (x) = (αλ/x2) exp(−λ/x)[1−exp(−λ/x)]α−1,
x > 0, α, λ > 0.

We use chi-square (χ2), Kolmogorov-Smirnov (KS) goodness-of-fit tests to compare the fitting of
the distributions. In many situations, we may have more than one model that provides a reasonable
fit to the data according to the (χ2) and KS tests at a given level of significance. In such cases, model
compatibility can be compared using Akaike information criterion (AIC) and Bayesian information
criterion (BIC). The fitting summary of the models for both data sets obtained from JSPI and CSDA
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Table 4: Maximum likelihood estimates (SE) and goodness-of-fit statistics for the considered models based on
the waiting times obtained from the Journal of Statistical Planning and Inference

Model Estimates (SE) KS p-value −Log L AIC BIC Rank
PLD α̂ = 1.182 (0.047), β̂ = 0.089 (0.012) 0.051 0.473 943.02 1890.03 1897.29 1
GLD α̂ = 1.461 (0.136), λ̂ = 0.175 (0.009) 0.039 0.778 943.26 1890.52 1897.78 2
GED α̂ = 2.478 (0.228), λ̂ = 0.129 (0.008) 0.043 0.582 948.53 1901.06 1908.32 6
WD p̂ = 1.617 (0.081), θ̂ = 0.013 (0.003) 0.057 0.323 947.81 1899.61 1906.87 5
GD α̂ = 2.306 (0.183), θ̂ = 0.179 (0.016) 0.039 0.677 947.42 1898.84 1906.10 4
FW α̂ = 0.043 (0.002), β̂ = 2.502 (0.276) 0.622 0.000 1149.05 2302.10 2309.36 8
WL ĉ = 1.576 (0.176), θ̂ = 0.192 (0.016) 0.040 0.739 944.23 1892.45 1899.71 3
IW α̂ = 0.699 (0.023), λ̂ = 3.642 (0.230) 0.248 0.000 1119.76 2243.53 2250.79 7

GIED α̂ = 0.638 (0.052), λ̂ =2.542 (0.258) 0.324 0.000 1196.11 2396.21 2403.47 9

SE = standard error; KS =Kolmogorov-Smirnov; AIC =Akaike information criterion; BIC = Bayesian information criterion;
PLD = power Lindley distribution; GLD = generalized Lindley distribution; GED = generalized exponential distribution; WD
=Weibull distribution; GD = Gamma distribution; FW = flexible Weibull; WL = weighted Lindley; IW = inverse Weibull;
GIED = generalized inverted exponential distribution.

Table 5: The χ2 statistic, observed frequency (O) and expected frequency for considered distributions based on
WTA obtained from JSPI and CSDA

O PLD GLD GED WD GD FW WL IW GIED

JSPI
Total 279 278.963 278.880 278.710 278.980 278.870 278.990 278.900 226.730 242.460

χ2 13.810 11.560 12.530 19.220 12.520 230.010 12.540 204.660 308.760
p-value 0.387 0.564 0.484 0.116 0.485 0.000 0.483 0.000 0.000

CSDA
Total 225 224.832 224.381 223.865 224.906 224.489 224.812 224.541 171.439 192.041

χ2 16.916 13.007 13.764 21.995 13.609 170.086 13.982 201.984 258.808
p-value 0.031 0.112 0.088 0.005 0.092 0.000 0.082 0.000 0.000

WTA = waiting time of research article to be accepted; JSPI = Journal of Statistical Planning and Inference; CSDA =
Computational Statistics and Data Analysis; O = observed frequency; PLD = power Lindley distribution; GLD = generalized
Lindley distribution; GED = generalized exponential distribution; WD = Weibull distribution; GD = Gamma distribution;
FW = flexible Weibull; WL =weighted Lindley; IW = inverse Weibull; GIED = generalized inverted exponential distribution.

are summarized in Tables 4–6. From the KS test, it can be observed that FW, IW, and GIED distri-
butions do not show their compatibility to the data sets; however, PLD, GLD, WL, GED, GD, and
WD do fit the data sets. More than one distribution provides a reasonable fit; therefore, we need to
use AIC and BIC to select the best possible distribution. We find that PLD provides the best fit for
the WTA data as it shows the lowest AIC and BIC among other distributions. Table 7 presents the
estimates based on the WTA and the PLD parameters. The mean WTA for the research articles pub-
lished in CSDA and JSPI are 10.87 and 12.88, respectively. This means that the research articles take
10–11 and 12–13 months (on an average) for the acceptance of their publication in CSDA and JSPI,
respectively.

7. Conclusions

In this paper, PLD is considered with its properties and applications. In a classical set-up, three
different methods of estimation (MLE, MPS, and LSE) were discussed to estimate unknown PLD
parameters. It is found that the MPS estimators outperform MLE and LSE in terms of their MSEs. The
Bayesian set-up considers the parameters to follow the independent gamma prior distributions. Bayes
estimators are constructed under the assumption of quadratic loss function. Lindley’s approximation
and MCMC techniques are used since explicit derivations for Bayes estimators cannot be obtained. It
is observed that the MCMC techniques provide good approximation to the posterior as well as provide
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Table 6: Maximum likelihood estimates (SE), KS statistics, and the corresponding p-value for the considered
models based on waiting times obtained from Computational Statistics and Data Analysis

Model Estimates (SE) KS p-value −Log L AIC BIC Rank
PLD α̂ = 1.387 (0.062), β̂ = 0.066 (0.011) 0.055 0.512 695.83 1395.66 1396.37 1
GLD α̂ = 2.194 (0.246), λ̂ = 0.243 (0.014) 0.045 0.751 696.13 1396.26 1396.96 2
GED α̂ = 3.636 (0.401), λ̂ = 0.183 (0.012) 0.052 0.575 701.55 1407.13 1407.81 6
WD p̂ = 1.903 (0.116), θ̂ = 0.008 (0.003) 0.071 0.204 701.52 1407.04 1407.74 5
GD α̂ = 3.197 (0.287), θ̂ = 0.294 (0.028) 0.051 0.604 699.76 1403.53 1404.24 4
FW α̂ = 0.057 (0.003), β̂ = 3.070 (0.343) 0.406 0.000 874.23 1752.46 1753.17 8
WL ĉ = 2.451 (0.282), θ̂ = 0.307 (0.028) 0.051 0.606 697.62 1399.23 1399.93 3
IW α̂ = 0.733 (0.025), λ̂ = 3.754 (0.263) 0.286 0.000 863.01 1730.02 1730.72 7

GIED α̂ = 0.766 (0.073), λ̂ = 3.062 (0.334) 0.345 0.000 920.39 1844.79 1845.49 9

SE = standard error; KS =Kolmogorov-Smirnov; AIC =Akaike information criterion; BIC = Bayesian information criterion;
PLD = power Lindley distribution; GLD = generalized Lindley distribution; GED = generalized exponential distribution; WD
=Weibull distribution; GD = Gamma distribution; FW = flexible Weibull; WL = weighted Lindley; IW = inverse Weibull;
GIED = generalized inverted exponential distribution.

Table 7: Classical and Bayes estimates of the parameters of power Lindley distribution for waiting times data
sets of CSDA and JSPI

Method CSDA JSPI
α β α β

Classical
MLE 1.386 0.066 1.182 0.089
LSE 1.431 0.062 1.215 0.085
MPS 1.358 0.070 1.159 0.095

Lindley distribution
Non-inf 1.350 0.073 1.156 0.097

Gamma-1 1.350 0.073 1.156 0.097
Gamma-2 1.350 0.073 1.156 0.097

Markov chain Monte Carlo
Non-inf 1.393 0.064 1.186 0.088

Gamma-1 1.393 0.064 1.186 0.088
Gamma-2 1.393 0.064 1.186 0.088

JSPI = Journal of Statistical Planning and Inference; CSDA = Computational Statistics and Data Analysis; MLE =maximum
likelihood estimate; LSE = least squares estimate; MPS = maximum product spacings; Non-inf = non-informative.

more efficient estimates for the parameters than those obtained using Lindley’s approximation. The
PLD is applied to model the waiting times for research articles to be accepted for publication in
statistical journals and it is found that the PLD reasonably fits the data better than other competing
distributions. Finally, we can conclude that the PLD has nice properties with closed forms for the
survival and hazard functions as well as provides a better model than other competing distributions
such as Weibull, gamma, and IW.

Appendix
Lemma 1. Let

I (α, β, n, x) =
∫ ∞

x
(1 + uα) uα+n−1e−βuαdu.

We have,

I (α, β, n, x) =
1
αβ

e−βxα xn
∞∑
j=0

(−1) j

(βxα) j

(
b1 j + b2 jxα

)
,



Classical and Bayesian methods of estimation for power Lindley distribution 207

where b10 = b20 = 1, b1 j = (1 − a1)(2 − a1) · · · ( j − a1), b2 j = (1 − a2)(2 − a2) · · · ( j − a2), a1 =

n/α + 1, a2 = n/α + 2.

Proof: One can simply prove this Lemma using the definition of incomplete gamma function. �
Lemma 2. Let

G(a, b, c, A, B) =
∫ ∞

0
ta−1 exp

(
−btA − ctB

)
dt.

Then, we have

G(a, b, c, A, B) =
1

ABb
a
A

1
2πi

∫ γ+i∞

γ−i∞
Γ

(a + s
A

)
Γ

( s
B

) (
c

1
B b

1
A

)−s
dt

=
1

ABb
a
A

H2,0
0,2

[
c

1
B b

1
A

∣∣∣∣(0, 1
B )( a

A ,
1
A )

]
,

where H denotes the H-function Mathai et al. (2010) and is defined as

Hm,n
p,q

[
z
∣∣∣∣(a1,A1)···(ap,Ap)
(b1,B1)···(bq,Bq)

]
=

1
2πi

∫ γ+i∞

γ−i∞

∏m
j=1 Γ(b j + B js)

∏n
j=1 Γ(1 − a j − A js)∏q

j=m+1 Γ(1 − b j − B js)
∏p

j=n+1 Γ(a j + A js)
z−sds,

m, n, p, q ∈ N0 with 0 ≤ n ≤ p, 1 ≤ m ≤ q; A j, B j ∈ R+ and a j, b j ∈ R or C.

Proof: Consider, the integral of the form

g(u) =
∫ ∞

0

1
v

f1
(u

v

)
f2 (v) dv.

By the convolution property of Millen transformation (Mathai et al., 2010), we have

Mg (s) = M f1 (s) M f2 (s) ,

where Mg(s) denotes the Millen transformation of function g and is defined as

Mg (s) =
∫ ∞

0
us−1g(u)du, G(a, b, c, A, B) =

∫ ∞

0

1
t

ta e−btA︸  ︷︷  ︸
f1

e−ctB︸︷︷︸
f2

dt,

then MG(s) = [1/A][Γ((a + s)/A)]/b(a+s)/A× [1/B][Γ(s/B)]/cs/B. The inverse Millen transformation of
above expression yields the integral

G(a, b, c, A, B) =
1

ABb
a
A

1
2πi

∫ γ+i∞

γ−i∞
Γ

(a + s
A

)
Γ

( s
B

) (
c

1
B b

1
A

)−s
dt

=
1

ABb
a
A

H2,0
0,2

[
c

1
B b

1
A

∣∣∣∣(0, 1
B ) ( a

A ,
1
A )

]
.

�
Lemma 3.

I(a, b) =
∫ ∞

0
ya−1 log(y)e−bydy =

Γ(a)
ba

[
ψ(a) − log(b)

]
, a, b > 0,

where ψ(y) = (d/dy) lnΓ(y) is a digamma function.

Proof: See, Gradshteyn and Ryzhik (2007, p 573) integral. �
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