The purpose of this study is to find out the image according to formative properties of hat and garment in the fashion collection. For the study, the 96 stimuli found frequently in fashion collection from the S/S season of 1998 to the F/W season of 2004 were selected. Sets of stimulus and response scales (7 point semantic) were used as experimental materials. The stimuli were 96 pictures with the types of hat(4), the lengths of hair(3), the types of garment(3), the relations between the color of garment and hat(4), and the materials(4) and patterns of garment(2). The subjects were 415 women college students majoring fashion design related fields and living in Seoul and Gyeongsangnam-do. As statistical methods for data analysis, Factor Analysis, ANOVA test, and LSD test were used. The items of the adjectives were classified into 5 image dimensions; attractiveness, gracefulness, concentration, cuteness, and hardness and softness. Among these factors, each dimensional image was affected by formative properties of hat and garment. The image of a hat-wearer was perceived differently according to the hair style and the formative properties of hat and garment even if the type of hat was same.
Learning graphical representations for statistical data requires understanding of the context related to measurement in statistical investigation since the choice of representation and the features of the selected graph to represent the data are determined by the purpose and context of data collection and the types of the data collected. This study investigated whether middle school students can think critically about measurement and scales integrating contextual knowledge and statistical knowledge. According to our results, the students lacked critical thinking related to measurement process of data and scales of graphical representations. In particular, the students had a tendency not to question upon information provided from data and graphs. They also lacked competence to critique data and graphs and to make a flexible judgement in light of context including statistical purpose.
The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.
Communications for Statistical Applications and Methods
/
v.22
no.6
/
pp.575-587
/
2015
The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.
Mixed-mode (MM) designs in which data are collected by different modes in one design have become increasingly popular. An MM data collection has several advantages such as reductions of coverage error, non-response and cost. However, MM designs may introduce mode effects that are confounded by selection effects and measurement effects, which can make MM data quality poor. In order to investigate mode effects, SRI implemented a concurrent mixed-mode experiment in 2014 where respondents could choose between a self-administrated Web survey and a self-administrated paper survey. This paper separately estimates selection effects and measurement effects. We found that measurement effects on some items are large.
Statistical analysis is an essential component of the medical writing process for research-related articles. Although the importance of statistical testing is emphasized, statistical mistakes continue to appear in journal articles. Major statistical mistakes can occur in any of the three different stages of medical writing, including in the design stage, analysis stage, and interpretation stage. In the design stage, mistakes occur if there is a lack of specificity regarding the research hypothesis or data collection and analysis plans. Discrepancies in the analysis stage occur if the purpose of the study and characteristics of the data are not sufficiently considered, or when an inappropriate analytic procedure is followed. After performing the analysis, the results are interpreted, and an article is written. Statistical analysis mistakes can occur if the underlying methods are incorrectly written or if the results are misinterpreted. In this paper, we describe the statistical mistakes that commonly occur in medical research-related articles and provide advice with the aim to help readers reduce, resolve, and avoid these mistakes in the future.
We discuss the paper by Cho, Shin, Lee, and Han on the "information-relate" undergraduate statistics major program from the following perspectives: Recently, Korean universities are under re-structuring turmoil. To effectively confront the situation, we need both the vision and the strategy for statistics and statistics departments. For undergraduate statistics major program, our visions are 1) it should not be preliminary education program targeted for the graduate degrees, 2) it should be responsive to future social demand, and 3) it should incorporate the progressive identity of statistics as information and data science. As strategies, we propose 1) the effective integration and due balance among data collection, management and analysis, 2) the harmony and role development of computers and mathematics as statistical tools, 3) the statistics education through task-oriented problem solving, and 4) the emphasis of team work and communication skills.on skills.
Communications for Statistical Applications and Methods
/
v.29
no.5
/
pp.533-545
/
2022
Collection of data on several variables, especially in the field of medicine, results in the problem of measurement errors. The presence of such measurement errors may influence the outcomes or estimates of the parameter in the model. In classification scenario, the presence of measurement errors will affect the intrinsic cum summary measures of Receiver Operating Characteristic (ROC) curve. In the context of ROC curve, only a few researchers have attempted to study the problem of measurement errors in estimating the area under their respective ROC curves in the framework of univariate setup. In this paper, we work on the estimation of area under the multivariate ROC curve in the presence of measurement errors. The proposed work is supported with a real dataset and simulation studies. Results show that the proposed bias-corrected estimator helps in correcting the AUC with minimum bias and minimum mean square error.
Typically users prefer to manage and access personal photo collections taken from a cell phone based on events. In this paper we propose an event clustering algorithm that requires low computation cost with high accuracy supporting incremental operation. The proposed method is based on the statistical analysis of the elapsed interval of intra-event photos on the real sample data for the decision of an event boundary. We then incorporate both location and visual information for the ambiguous range to split with only temporal cue. According to test results, we show higher performance compared to existing general clustering approaches.
Journal of the Korean Society for information Management
/
v.33
no.3
/
pp.239-262
/
2016
This study aims to explore ways to improve self-censorship tendency in teacher librarians by identifying factors that influence the self-censorship which appears during collection development in elementary school libraries. For this purpose, first, we examined the concept of self-censorship through a review of related literature, then carried out a series of in-depth interviews as a pilot study to develop a questionnaire, which was used for a questionnaire survey. Finally, the survey data was analyzed statistically with SPSS 21.0, a statistical package. As a result, we have discovered statistically significant relationships between self-censorship and the characteristics in collection development policies, school library committees, and the complaints related with the library collections. Based on these results, the factors on the self-censorship were identified in the perception of the school librarians. Based on these results, we suggest to reinforce the function of review and approval of book selection in the school library committee, developed and approved a collection development policy include guidelines for dealing with users' complaints related to library collection, and stipulated a regulation for school library operation to remove inappropriate books from the library collection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.