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Abstract
The development in data collection techniques results in high dimensional data sets, where discrimination

is an important and commonly encountered problem that are crucial to resolve when high dimensional data is
heterogeneous (non-common variance covariance structure for classes). An example of this is to classify mi-
crobial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolu-
tionary genetic relationships and may help industry produce specific enzymes. Most classification procedures
assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most
high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA
(rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data
sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS)
and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed
and existing methods is conducted over the simulated data set; in addition, the proposed procedure is imple-
mented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic,
Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat
is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual in-
teractions influential for respective habitat preference are identified. The proposed method also produced results
that concurred with known biological characteristics that will help researchers better understand divergence of
species.

Keywords: partial least squares, classification, variable selection, parsimonious model, high di-
mensional data sets, identification, multi collinearity, microbial

1. Introduction

Tremendous advances in technology has made it possible to sample observations based on a huge
number of genetic and ecological variables. It is much easier to generate gigantic sets of raw data,
establish relations and provide a biological understanding (Bachvarov et al., 2008).

Huge sets of variables are typically used as explanatory variables and are assumed with a poten-
tial impact on classification variables. Most biological studies result in large numbers of variables
p compared the number of samples n. In such situation logistic regression or other traditional clas-
sification methods like linear discriminant analysis (LDA) (Barker and Rayens, 2003; Lachenbruch
and Goldstein, 1979) or quadratic discriminant analysis (QDA) (Hastie et al., 2009; Lachenbruch
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and Goldstein, 1979) face a multi collinearity and identification problem (Wold et al., 1984). In this
instance, multivariate approach, like partial least square (PLS), is natural to use. This regression pro-
vides the solution in the ‘large p small n’ situation, see (Martens and Næs, 1989). PLS in its original
form is a regression method; however, but has been extensively used for classification analysis (Als-
berg et al., 1998; Liland et al., 2013; Mehmood et al., 2011a, 2011b, 2012a, 2012b, 2012c, 2014;
Wold et al., 1984). In general, if we have C classes, one of the accepted procedure is to first convert
the response into C binary responses, and then fit each binary response with an explanatory variable.
The predicted class is determined based on the sign of predicted PLS response (Martens and Næs,
1989; Sæbø et al., 2008).

An alternative approach for the classification of high dimensional data set is to couple PLS scores
with LDA, which was first used by Lindgren et al. (1994), and later studied in (Boulesteix, 2004;
Chun and Keleş, 2010; Lindgren et al., 1994; Mehmood et al., 2011b; Nguyen and Rocke, 2002a).
The extensive comparison study performed by Boulesteix (2004), which included many classification
methods, employing PLS as a dimension reduction method and using the PLS components scores
as predictors in LDA ranges among the best classification procedures for all the eight cancer data
sets. PLS scores corresponding to an optimum PLS model are normally very few compared to the
total number of explanatory variables and more over are assumed to be orthogonal. Subsequently,
orthogonal PLS components as an input for the LDA handles the problem of multi collinearity and
identification, and results the satisfactory classification accuracy. LDA is assumed to provide best
possible accuracy given that its assumptions are satisfied, which are the homogeneity i.e. common
variance covariance structure and multivariate normal distribution. For high dimensional data sets
multivariate normal distribution is mostly conserved, while the common variance covariance structure
for each class is in question (Hastie et al., 2009). The non-common variance covariance structure
motivates to couple PLS scores with QDA first introduced by Nguyen and Rocke (2002a, 2002b) and
later studied in (Boulesteix, 2004).

Extracting the parsimonious model (the smallest number of variables which explains the mod-
eled relation better while keeping the satisfactory classification accuracy) is also required with the
classification accuracy in high dimensional data sets. This motivates researchers to create variable
selection strategies with several possibilities. For instance soft threshold based shrinkage in PLS
(stPLS) (Sæbø et al., 2008), regularized stepwise elimination procedure for variable selection in PLS
(rePLS) (Mehmood et al., 2011a). For classification purpose, stPLS uses the sign of predicted re-
sponse based approach, while rePLS merges the PLS with LDA (rePLS-LDA). Motivated by a re-
cently introduced variable selection procedure regularized elimination in partial least square (rePLS)
(Mehmood et al., 2011a) and heterogeneous classification procedure QDA (Hastie et al., 2009), we
have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for
the parsimonious variable selection and classification of high dimensional heterogeneous data sets,
while the heterogeneity means the non-common variance covariance structure in classes. The accu-
racy of rePLS-QDA has been compared with PLS-LDA, PLS-QDA, rePLS-LDA and stPLS over the
simulated data. A comparison of rePLS-QDA has been done with PLS-QDA and stPLS on real data
since the considered real biological data sets appears heterogeneous.

2. Methods

2.1. Partial least squares

We have considered a classification problem where every object belongs to one of two possible classes,
as indicated by the n× 1 class label vector y. We fit C models if response has C classes then we create
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C numeric response vector y by coding as +1’s (if the sample is from respective class) and −1’s (if
the sample is not from respective). The association between y and the n × p predictor matrix X is
assumed to be explained by the linear model E(y) = Xβ where β are the p × 1 vector of regression
coefficients. The purpose of variable selection is to find a column subset of X capable of satisfactory
explaining the variations in y.

From a modeling perspective, ordinary least square fitting is no option when n < p. PLS resolves
this by searching for a small set of components, ‘latent vectors’, that performs a simultaneous decom-
position of X and y with the constraint that these components explain much of the covariance between
X and y.

Initially the variables are centered into X0 = X − 1x̄′ and y0 = y − 1ȳ. Let A be the number of
components to be extracted. Then for a = 1, 2, . . . , A the algorithm runs:

1. Compute the loading weights by

wa = X′a−1ya−1.

The weights define the direction in the space spanned by Xa−1 of maximum covariance with ya−1.
Normalize to loading weights to have length equal to 1 by

wa ←
wa

||wa||
.

2. Compute the score vector ta by

ta = Xa−1wa.

3. Compute the X-loadings pa by regressing the variables in Xa−1 on the score vector:

pa = X′a−1
ta

t′a ta
.

Similarly compute the Y-loading qa by

qa = y′a−1
ta

t′a ta
.

4. Deflate Xa−1 and ya−1 by subtracting the contribution of ta:

Xa = Xa−1 − ta p′a,
ya = ya−1 − taqa.

5. If a < A return to 1.

Let the loading weights, scores and loadings computed at each step of the algorithm be stored in
matrices/vectors W = [w1,w2, . . . ,wA], T = [t1, t2, . . . , tA], P = [p1, p2, . . . , pA] and q = [q1, q2, . . . ,
qA]. Then the PLS estimators for the regression coefficients for the linear model are found by β̂ =
W(P′W)−1q, which indicates the involvement of respective variables in the PLS model.
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2.2. Regularized elimination procedure for variable selection in PLS

Recently, a stepwise regularized variable elimination procedure for variable selection (Mehmood et
al., 2011a) is proposed for parsimonious model fitting. The procedure starts with the split of the
training data into test and training subsets. For each split, a stepwise procedure is adopted to select
the variables. Stable variables that are being extracted by stepwise elimination from all splits of the
data are consequently selected. The proposed algorithm requires a ranking of variables in X, which is
accomplished by variable importance in PLS projections (VIP) (Eriksson et al., 2001).

VIP for the variable j is defined according to (Eriksson et al., 2001) as

v j =

√√
p

a∗∑
a=1

(p2
2a t′a ta

) ( wa j

∥wa∥

)2 / a∗∑
a=1

(
p2

2a t′a ta

)
,

where a = 1, 2, . . . , A, wa j is the loading weight for variable j using a components and ta, wa and p2a
are CPPLS scores, loading weights and y-loadings respectively corresponding to the ath component.
Gosselin et al. (2010) explains the main difference between the regression coefficient β j and v j.
The v j weights the contribution of each variable according to the variance explained by each PLS
component, i.e. p2

2a t′a ta where (wa j/∥wa∥)2 represents the importance of the jth variable. Variable j
can be eliminated if v j < u for some user-defined threshold u ∈ [0,∞). It is generally accepted that a
variable should be selected if v j > 1, see (Eriksson et al., 2001).

The algorithm is: Let Z0 = X and let VIP j be the variable importance for variable j.

1) For iteration g run y and Zg through cross-validated PLS. The matrix Zg has pg columns, and we
get the same number of criterion values, sorted in ascending order as VIP(1), . . . ,VIP(pg).

2) There are M criterion values below (above for criterion q j) the cutoff u. If M = 0, terminate the
algorithm here.

3) Else, let N = ⌈ f M⌉ for some fraction f ∈ ⟨0, 1]. Eliminate the variables corresponding to the N
most extreme criterion values.

4) If there are still more than one variable left, let Zg+1 contain these variables, and return to 1).

The fraction f determines the ’step length’ of the elimination algorithm, where an f close to 0 will
only eliminate a few variables in every iteration. We used f = 1 and u = 1 as reported in (Eriksson
et al., 2001; Mehmood et al., 2011a). The implemented iterative procedure allows for a marginal
decrease in model discrimination performance that can significantly decrease the number of selected
variables, which in turn improve the interpret ability of the model noticeably, see Mehmood et al.
(2011a).

2.3. Classification of heterogeneous data sets by using QDA with rePLS

The procedure rePLS results in Xselected containing selected variables only. Since the rePLS scores
S are normally distributed and usually initial few component explain the most of the variation of
the original data. In presence of heterogeneity, we assume the density fC(s), which presents rePLS
scores S in class C follows multivariate normal distribution with class mean µC and ΣC is the variance
covariance for class C that maximizes the discriminant function

δC(x) = −1
2

log |ΣC | −
1
2

(x − µC)′Σ−1
C (x − µC) + log πC . (2.1)
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Hence by employing rePLS as a dimension reduction and variable selection method and using the
rePLS components in each iteration as predictors in a QDA, classification of heterogeneous data can
be achieved.

2.4. Reference methods
2.4.1. PLS-LDA and PLS-QDA

We can couple PLS with LDA or QDA which results is PLS-LDA and PLS-QDA respectively since
PLS is regression procedure, for the discrimination. In PLS-LDA setting (Boulesteix, 2004; Lindgren
et al., 1994), we assume the density fC(s), which presents PLS scores S in class C follows multivariate
normal distribution with class mean µC and pooled with in class covariance matrix Σ, while in QDA-
PLS (Boulesteix, 2004; Nguyen and Rocke, 2002a) setting we assume the heterogeneous variance
covariance structure ΣC over PLS scores.

2.4.2. Soft-Threshold PLS (stPLS)

Sæbø et al. (2008) introduced a soft-thresholding step in PLS algorithm (stPLS) based on ideas from
the nearest shrunken centroid method (Tibshirani et al., 2003). The stPLS approach is more or less
identical to the Sparse-PLS presented independently by Lê Cao et al. (2008). At each step of the
sequential stPLS algorithm the PLS loading weights w are modified as:

1. Scaling:

wk ← wk/max j |wk, j|, for j = 1, . . . , p and k = 1, . . . , A, where A is the number of PLS compo-
nents.

2. Soft-thresholding:

wk, j ← sign(wk, j)(|wk, j| − δ)+, for j = 1, . . . , p and some δ ∈ [0, 1⟩. For any real number a, here
(a)+ means max(0, a).

3. Normalizing:

wk ← wk
∥wk∥ .

The shrinkage δ ∈ [0, 1) sets the degree of thresholding, i.e. a larger δ gives a smaller selected
set of variables. Cross validation is used to define this threshold. stPLS uses the sign(βstPLS ) for the
classification of new samples in to class ‘+1’ or into class ‘−1’ (Sæbø et al., 2008).

3. Simulation Study

3.1. Data simulation

In order to make comparison of stPLS, rePLS-LDA and rePLS-QDA, data for each class was simu-
lated from a known model y = Xβ + ϵ, where y takes −1 if respective sample is from class 1, and +1
if respective sample is from class 2. The p-vectors of variables x was assumed multivariate normally
distributed with mean-vector µ = 0 and covariance matrix Σ.

X ∼ MVN(0,Σ)

The variances of all variables were set equal to 1, hence Σ is also a correlation matrix. Further, groups
of correlated x variables were constructed by imposing a block diagonal structure on Σ with L blocks
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i.e.

ΣC =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣL

 .
3.2. Simulation based results

For simulation study, three levels of number of variables P = (50, 100, 500) with total of L = 10
groups of equal number of variables were considered. We have assumed different correlation struc-
tures for both classes since we have considered a two class problem and our objective is to make the
comparison when each class follows day different variances covariance structure (ΣC). We have used
uniform ΣCl by R = [0.3, 0.3, 0.2, 0, 0, 0, 0, 0, 0, 0] for class 1 and by R = ([0.6, 0.9, 0, 0, 0, 0, 0, 0, 0, 0],
[−0.5, −0.3, 0, 0, 0, 0, 0, 0, 0, 0]) for class 2. This indicates ΣC has 2 levels, where the second level of
R creates the more heterogeneous data for class 2 compared to the first level of R. Two levels of ΣC

together with 3 levels of P results in total 6 different data sets. To have stable estimates of the fitted
models and their comparison 100 runs were used.

For each run, we have simulated training and test data set each of size N = 100, where train-
ing data set was used to train the PLS methods while test data set was used to evaluate meth-
ods. The classification accuracy over the test data and relative number of selected variables (=
(number of selected variables/total number of variables)× 100) were extracted for each run. Through
F-test, we found PLS methods (p-value < 0.001) and Σk structures (p-value < 0.001) are signifi-
cantly factors which explain the variation in the accuracy of PLS methods. Similarly, PlS methods,
number of variables and Σk structures were all found significant (p-value < 0.001) in explaining the
variation in a relative number of selected variables. Figure 1 presents the distributions of accuracy
and relative number of selected variables for PlS methods, number of variables and Σk structures. In
terms of accuracy, we found rePLS-QDA outperforms the PLS-QDA, rePLS-LDA and stPLS. Fur-
ther, as the variance structure of class 2 get more different from the variance structure of class 1
the accuracy of PLS based approaches increased. Of interest is that rePLS-LDA and rePLS-QDA
are both found to have relatively small number of variables compared to stPLS as shown in lower
panel of Figure 1. A relatively small number of selected variables were found with P = 500 and
R = [−0.5,−0.3, 0, 0, 0, 0, 0, 0, 0, 0].

4. Application

An application of the classification procedure is to find the preferred habitat based on relevant codons/
bi-codon associated with a certain microbial. A huge amount of genetic divergence in microbial
is observed. Genomic data can be used to characterize different microbial communities occupying
different environmental niches (Tringe et al., 2005). There are many factors that cause this divergence,
and habitat preference is one among them (Hübner et al., 2013). Habitat preference is also important
to study for evolutionary genetic relationship and may help a potential industry to produce specific
enzymes. Production organisms need to accurately portray and selection pressure under which the
microbes evolve with required needs (Jensen et al., 2012). Microbial habitat preference is mostly
effected by ecological conditions like depth of water, season, temperature, desert and soil condition
(Handelsman, 2004). Genome from same species may have different habitat preferences, which could
be the result of competitive elimination on a very small scale and ecological conditions (Watson et al.,
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Figure 1: The distribution of (a) accuracy measured over the test data and (b) relative number of selected variables
is presented for different levels of PLS methods, number of variables (P) and Σk structures (R).

2004). Microbial communities in ecosystems are influenced by habitat preferences and are considered
important sources of genetic variation with microbes classified based on habitat type (Singh et al.,
2006).

Microbial codon usage can be classified between different bacterial habitat and may eventually
help researchers understand genetic divergences of microbial species. The overall codon usage is
affected by the selection of amino acids and codon bias within the redundant amino acids. Codons
are triplets of nucleotides in coding genes and messenger RNA that codons translate genetic infor-
mation into specific proteins. There are 20 amino acids are singly coded by 1, 2, 4 or 6 different
codons (excluding the three stop codons there are 61 codons). However, the different codons encod-
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ing individual amino acids are not selectively correspondent because corresponding tRNAs differ in
abundance, allowing for selection on codon usage. Codon usage is a pointer of the force shaping
genome evolution in prokaryotes (Mehmood et al., 2011a; Mehmood and Snipen, 2013), reflection
of life style (Hanes et al., 2009) and organisms within similar habitat often have similar codon usage
pattern in their genomes (Chen et al., 2007). Higher order codon frequencies, e.g. di-codons are
considered important with respect to joint effects of codons, like synergistic effect (Nguyen et al.,
2009).

4.1. Habitat discrimination data

The genomic sequence data used to train the model was divided into two groups, Positives and Nega-
tives. Positives contained microbial coding sequence having respective habitat preference, and Nega-
tives consist of random coding sequences.

4.1.1. Positives

We have considered 445 microbial genomes, their genomic sequence and the respective habitat infor-
mation were obtained from NCBI Genome Projects (http://www.ncbi.nlm.nih.gov/genomes/
lproks.cgi). The response variable in our data set is habitat preference. There are in total 5 habitat
preferences included in our data set, namely Aquatic, Host Associated, Multiple, Specialized and Ter-
restrial. For each genome, genes were predicted by gene prediction software Prodigal (Hyatt et al.,
2010), these genes are considered as a set of Positives.

4.1.2. Negatives

We only consider two-class problems, i.e. for some fixed ‘habitat A’, we only classify genomes as
either ‘habitat A’, or ‘not habitat A’. Thus, we have 5 different responses of −1/ + 1 outcome, consid-
ering one at a time. Negatives sequences must be contrasted against sequences those are not belonging
to respective habitat. While constructing Negatives AT/GC content should be preserved, so we have
permuted the position of DNA alphabets in predicted genes i.e. of Positive sequence. Hence we get
the Negatives sequences having the equal length and number of Positive sequences.

4.2. Data splitting

The genome of one strain from each habitat category was randomly selected from which Positive and
Negative sequences were extracted. We used a cross validation type approach where the data sets
containing Positives and Negatives were randomly divided into 10 equally sized subsets, with one of
these subsets taking the role of test data while the other 9 remaining subsets are considered as training
data.

4.3. Results and discussion

For identification of codon variations that distinguishes different habitat preference of microbes, 5
models, representing each habitat preference were considered separately. The number of genomes,
average GC-content, average GC-variation, average genome size in mega bases (MB) and average
growth temperature (C) for each habitat (Table 1).

For the discriminating the habitat preference of microbial based on codon/di-codon usage, PLS-
QDA, stPLS, rePLS-LDA, and rePLS-QDA was used. All habitant preference discriminative models
we found the PLS scores are following the multivariate normal distribution but the common variance
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Table 1: An overview of the habitats used in the current study along with number of genomes, average GC-
content, average GC-variation, average genome size in mega bases (MB) and average growth temperature (C)

Habitat Number of genomes GC-content GC variation Genome size (MB) Growth temperature (C)
Aquatic 105 0.51 0.031 3.56 38.8

Host Associated 155 0.44 0.029 2.61 34.4
Multiple 142 0.53 0.030 4.12 30.7

Specialized 56 0.48 0.030 2.42 59.7
Terrestrial 27 0.58 0.029 5.01 31.9

Table 2: Number of components, number of selected variables, discrimination performance on test data by
using PLS-QDA, rePLS-QDA and stPLS are presented

Habitat Number of components Number of selected variables Discriminatory performance (%)
PLS-QDA rePLS-QDA stPLS rePLS-QDA stPLS PLS-QDA rePLS-QDA stPLS

Aquatic 3 2 2 56 62 96.7 98.4 92.1
Host Associated 2 8 2 19 65 96.8 98.9 94.7

Multiple 4 8 8 32 62 96.4 100.0 94.2
Specialized 2 8 3 28 62 94.1 100.0 91.2
Terrestrial 2 9 2 20 64 94.4 89.1 94.4

PLS = partial least square; QDA = quadratic discriminant analysis; rePLS = regularized elimination in PLS;
stPLS = soft-thresholding PLS.

covariance over the classes is not satisfied. For Aquatic preference discrimination, it appears PLS
scores follows multivariate normal distribution (Mardia’s multivariate normality test statistics = 6.30,
p-value = 0.177) and PLS scores have non-constant variance over the discriminating classes (Box M’s
test = 1001.9, p-value < 0.01), and this trend holds for each discriminating habitat. In such situation,
rePLS-LDA is not recommended, while rePLS-QDA, PLS-QDA and stPLS are natural to use to clas-
sify samples as +1 or −1. For model estimation, a tenfold cross validation was used. The number of
components presenting the complexity of each model, number of selected variables, discrimination
accuracy on test data by using PLS-QDA, rePLS-QDA, rePLS-LDA and stPLS (Table 2). These re-
sults indicates both rePLS-QDA performs the best in discriminating the most of habitat preferences
of microbial by using codon/di-codon usage. It appears that, the Terrestrial habitat is in general more
difficult to classify, simply because there are more diversity inside the group (Hättenschwiler et al.,
2011). This group also has the smallest number of genomes and adds a sampling bias. Number of
components indicates PLS-QDA has on the average simplest level of complexity, while both rePLS-
QDA and stPLS also have relatively higher but similar model complexity level on the average. Since
PLS-QDA is the classification method only, while rePLS-QDA and stPLS are variable selection and
classification method as well, it appears rePLS-QDA is more parsimonious compared to stPLS, since
it selects comparatively less number of influential variables and results in comparatively better clas-
sification accuracy in all cases. This is because, stepwise iterative parsimonious variable elimination
procedure was implemented to find codon/di-codon usage which improves the model interpretation
as well as eliminates some useful redundancy from the model and use a small number of variables
to discriminate the habitat (Norgaard et al., 2000), and that is why consistency of selected variables,
as utilized, retains the discriminating performance (Mehmood et al., 2011a). Hence for rest of the
analysis we have focused over the rePLS-QDA and have chosen the habitat Aquatic for a detailed
illustration of the method, while results for all habitat preferences are also provided in supplementary
material. Figure 2 shows the correlation biplot for Aquatic over the first two PLS components. The
correlation biplot shows for each codon/bi-codon their contribution to the two dimensions i.e. under-
lying phenomena (loadings), and for each genome (sample) their relative position in two dimensional
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Figure 2: The biplot for Aquatic is presented. Influential codon/di-codon influential for respective habitat (posi-
tive PLS regression coefficients) are labeled by their names in red color and influential codon/bi-codon influential
codon/bi-codon for random sequences (negative PLS regression coefficients) are labeled by their names in green

color. Further genomes (samples) are indicated by gray color.

space (scores).
Given that the habitat having reasonable discriminative performance, specific genetic variations

are expected (Costello et al., 2009). These genetic variations are expressed as selection of codon/bi-
codon. Influential codon/bi-codon having positive PLS regression coefficients i.e. influential for
respective habitat are labeled by their names in red color and influential codon/bi-codon having neg-
ative PLS regression coefficients i.e. influential codon/bi-codon for random sequences are labeled by
their names in green color. This identifies the influential codon/bi-codon for Aquatic as grouped in the
same direction while the bi-codon ‘AGCAGC’ acts in different direction. This bi-codon is translated
into amino acid Serine. Further genomes (samples) are indicated by gray color and the correlation
loadings indicate no outlier in the samples for this analysis.

All of the selected variables are bi-codon and provide additional support for the interaction of
genetic information is highly important for explaining variations in habitat (Botzman and Margalit,
2011; Lejeusne and Chevaldonné, 2006). From influential codon/bi-codon, we have considered the
only bi-codon having positive PLS regression coefficient for rest of the analysis i.e. those are respon-
sible of explaining variation in respective habitat. The influential bi-codon interactions are plotted in
bipartite plot, which presents the network of influential codons for Aquatic in Figure 3. We marked the
codon as most interactive codon if it has at least three linkages, and found two most interactive codons
as ‘TGA’, and ‘AAA’ which codes for stop codon and amino acid K(Lys) respectively. Codon bias
is also obvious to detect here, since there are many more than one codons that translate into unique
amino acids (Figure 3).

5. Conclusion

We have proposed PLS based approaches called regularized backward elimination algorithm in PLS
coupled with quadratic discriminant analysis (rePLS-QDA) for the variable selection and classifica-
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Figure 3: The bipartite plots showing the network of influential codons for Aquatic is presented.

tion of heterogeneous high dimensional data sets. We obtained a huge reduction in the number of
selected variables with acceptable classification accuracy. Proposed method out performs the PLS-
LDA, PLS-QDA, rePLS-LDA and stPLS over the simulated data. Proposed methods were also suc-
cessfully applied for habitat classification based on codon/bi-codon usages of microbes. We obtain
habitat models with superior interpretation; however, any type of genome-wide association study may
potentially benefit from the use of a multivariate selection.
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Lejeusne, C. and Chevaldonné, P. (2006). Brooding crustaceans in a highly fragmented habitat: the
genetic structure of Mediterranean marine cave-dwelling mysid populations, Molecular Ecology,
15, 4123–4140.

Liland, K. H., Høy, M., Martens, H. and Sæbø, S. (2013). Distribution based truncation for variable
selection in subspace methods for multivariate regression, Chemometrics and Intelligent Labo-
ratory Systems, 122, 103–111.

Lindgren, F., Geladi, P., Rännar, S. and Wold, S. (1994). Interactive variable selection (IVS) for PLS.
Part 1: Theory and algorithms, Journal of Chemometrics, 8, 349–363.

Martens, H. and Næs, T. (1989). Multivariate Calibration, Wiley & Sons, New York.
Mehmood, T., Bohlin, J., Kristoffersen, A. B., Sæbø, S., Warringer, J. and Snipen, L. (2012b). Explo-

ration of multivariate analysis in microbial coding sequence modeling, BMC Bioinformatics, 13,
97.

Mehmood, T., Bohlin, J. and Snipen, L. (2014). A partial least squares based procedure for upstream
sequence classification in prokaryotes., IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 12, 560–567.

Mehmood, T., Liland, K. H., Snipen, L. and Sæbø, S. (2012a). A review of variable selection methods
in partial least squares regression, Chemometrics and Intelligent Laboratory Systems, 118, 62–
69.

Mehmood, T., Martens, H., Sæbø, S., Warringer, J. and Snipen, L. (2011a).A partial least squares
based algorithm for parsimonious variable selection, Algorithms for Molecular Biology, 6, 27.

Mehmood, T., Martens, H. and Sæbø, S., Warringer, J. and Snipen, L. (2011b). Mining for genotype-
phenotype relations in Saccharomyces using partial least squares, BMC Bioinformatics, 12, 318.

Mehmood, T. and Snipen, L. (2013). Clustered variable selection by regularized elimination in PLS.



High Dimensional Heterogenous Classification 587

In H. Abdi, et al. (Eds.), New Perspectives in Partial Least Squares and Related Methods (pp.
95–105), Springer, New York.

Mehmood, T., Warringer, J., Snipen, L. and Sæbø, S. (2012c). Improving stability and understand-
ability of genotype-phenotype mapping in Saccharomyces using regularized variable selection
in L-PLS regression, BMC Bioinformatics, 13, 327.

Nguyen, D. V. and Rocke, D. M. (2002a). Tumor classification by partial least squares using microar-
ray gene expression data, Bioinformatics, 18, 39–50.

Nguyen, D. V. and Rocke, D. M. (2002b). Multi-class cancer classification via partial least squares
with gene expression profiles, Bioinformatics, 18, 1216–1226.

Nguyen, M. N., Ma, J., Fogel, G. B. and Rajapakse, J. C. (2009). Di-codon usage for gene classifica-
tion. In V. Kadirkamanathan, et al. (Eds.), Pattern Recognition in Bioinformatics (pp. 211–221),
Springer Berlin, Heidelberg.

Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L. and Engelsen, S. B. (2000). Interval
partial least-squares regression (iPLS): a comparative chemometric study with an example from
near-infrared spectroscopy, Applied Spectroscopy, 54, 413–419.

Sæbø, S., Almøy, T., Aarøe, J. and Aastveit, A. H. (2008). ST-PLS: a multi-dimensional nearest
shrunken centroid type classifier via PLS, Journal of Chemometrics, 22, 54–62.

Singh, B. K., Nazaries, L., Munro, S., Anderson, I. C. and Campbell, C. D. (2006). Use of multiplex
terminal restriction fragment length polymorphism for rapid and simultaneous analysis of differ-
ent components of the soil microbial community, Applied and Environmental Microbiology, 72,
7278–7285.

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003). Class prediction by nearest shrunken
centroids, with applications to DNA microarrays, Statistical Science, 18, 104–117.

Tringe, S. G., Von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M.,
Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P. and Rubin, E. M. (2005).
Comparative metagenomics of microbial communities, Science, 308, 554–557.

Watson, J. E., Whittaker, R. J. and Dawson, T. P. (2004). Avifaunal responses to habitat fragmenta-
tion in the threatened littoral forests of south-eastern Madagascar, Journal of Biogeography, 31,
1791–1807.

Wold, S., Ruhe, A., Wold, H. and Dunn, III, W. J. (1984). The collinearity problem in linear re-
gression. The partial least squares (PLS) approach to generalized inverses, SIAM Journal on
Scientific and Statistical Computing, 5, 735–743.

Received May 23, 2015; Revised August 26, 2015; Accepted September 23, 2015


