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Abstract
Collection of data on several variables, especially in the field of medicine, results in the problem of measure-

ment errors. The presence of such measurement errors may influence the outcomes or estimates of the parameter
in the model. In classification scenario, the presence of measurement errors will affect the intrinsic cum summary
measures of Receiver Operating Characteristic (ROC) curve. In the context of ROC curve, only a few researchers
have attempted to study the problem of measurement errors in estimating the area under their respective ROC
curves in the framework of univariate setup. In this paper, we work on the estimation of area under the multivari-
ate ROC curve in the presence of measurement errors. The proposed work is supported with a real dataset and
simulation studies. Results show that the proposed bias-corrected estimator helps in correcting the AUC with
minimum bias and minimum mean square error.

Keywords: multivariate ROC curve, area under the curve, measurement errors, minimax ap-
proach

1. Introduction

In many statistical applications, we are interested in classifying subjects into one of two or more
groups that have better percentage of correct classification. The Receiver Operating Characteristics
(ROC) curve is one such classification technique that plays an important role in evaluating the di-
agnostic test performance and classifies the individuals into one of the predefined groups. It is a
graphical plot between a false positive rate (1 − Specificity, 1 − Sp or FPR) and a true positive rate
(Sensitivity, Sn or TPR) for all possible values of a variable of interest.

The ROC curve can be estimated under both parametric and non-parametric approaches. The most
commonly used parametric ROC model is the Bi-Normal ROC curve (Egan, 1975), which is based on
the assumption that both populations underlie normal distribution. Considering practical situations,
the multivariate versions of the ROC curve were proposed by Su and Liu (1993); Schisterman et
al. (2004); Yuan and Ghosh (2008); Yin and Tian (2014); and Sameera et al. (2016). The area
under the curve (AUC) is an important summary measure that tells how well a classifier separates the
individuals. Bamber (1975) stated the AUC of a ROC curve as “∆ = P(Y > X), which measure how
well a biomarker distinguishes between the two groups, assuming both groups are normal where X
and Y are the biomarker values on controls and cases, respectively.”

In general, more care should be taken while collecting information on several markers, particularly
in the field of medicine. Some markers may be susceptible to substantial measurement errors (ME),
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which may be attributed to instruments used in the laboratory, the lack of knowledge of the techni-
cians, biological variability, temporal changes in subjects, etc. Shear et al. (1987) measured systolic
and diastolic blood pressure on children, which were used as forecasters of future hypertension. It is
well known that measurements are recorded by a person using laboratory instruments. To obtain the
recordings of systolic and diastolic blood pressure, laboratory instruments are used by the technicians.
However, such recordings may be susceptible to measurement errors if either the instruments or the
technicians report faulty values. For more examples on measurement errors, readers can look at Begg
and Greene (1983), Begg and McNeil (1988), and Berbaum et al., (1989).

In the context of ROC analysis, the existence of such measurement errors leads to inconsistent
estimates and also masks the true information. Coffin and Sukhatme (1996, 1997) came out with a
bias-corrected estimator for AUC (∆) in both parametric and non-parametric cases and the asymp-
totic distribution of these estimators were developed by Kim and Gleser (2000). Faraggi (2000) and
Raiser (2000) focused on explaining the effect of measurement errors on the confidence intervals of
∆ and derived a new confidence interval expression for ∆, which had the actual coverage. Using the
reliability approach, Dunn (1989) and Schisterman et al. (2001) have also developed the corrected
estimate for ∆ based on the assumption that replicated observations are available on the study objects.
Tosteson et al. (2005) and Perkins et al. (2009) proposed methodologies for correcting the AUC of
a ROC curve using the replicate measures and the maximum likelihood methods with the assumption
the existence of normal measurement errors.

These research works, which are discussed above, mostly focused on the univariate structure by
developing procedures to correct the AUC of a ROC curve. However, we come across multiple mark-
ers in real situations. The existing procedures will not address the problem of measurement errors
in estimating the AUC for such data. Hence, in this work, we have attempted to derive the approx-
imate bias-corrected estimator for AUC under a multivariate normality assumption in the presence
of measurement errors. Monte-Carlo simulation studies are performed at different sample sizes and
estimated the AUC’s along with the corresponding mean square error (MSE) values. The results are
discussed in Section 3, which depicts how the bias and the MSE of the estimators are influenced by
measurement errors. In addition, a real data set is also considered to demonstrate the effect or impact
of measurement errors in estimating the AUC of a multivariate ROC ( MROC) curve.

2. Methodology

In medicine, many markers are sensitive to different aspects of a disease. Thus, the validity of a single
biomarker to judge an individual’s health status may be reduced. For example, let us consider the
dataset from The British United Provident Association (BUPA) on liver disorders that consists of 345
samples with seven markers, such as mean corpuscular volume (mcv), alkaline phosphotase (alkphos),
alamine aminotransferase (sgpt), aspartate aminotransferase (sgot), gamma-glutamyl transpeptidase
(gammagt), and the number of half-pint equivalents of alcoholic beverages drunk per day (drinks).
Each marker has the disease status with or without the liver disorder. This scenario creates a ne-
cessity to develop a model that can accommodate more than one biomarker for better classification.
Hence, the work presented in this paper is based on the Multivariate Receiver Operating Characteristic
(MROC) model proposed by Sameera et al. (2016).

2.1. The MROC curve

Let X ∼ MVNp(µH ,ΣH) and Y ∼ MVNp(µD,ΣD), where µH , µD, ΣH and ΣD are mean vectors and
covariance matrices of Healthy (H) and Diseased (D) populations, respectively. The expressions for
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the False Positive Rate (FPR) and the True Positive Rate (TPR) are defined as,

FPR = P (S > c |H) = 1 − Φ

c − b
′

µH√
b′ΣHb

 (2.1)

and

TPR = P (S > c |D) = Φ

b
′

µD − c√
b′ΣDb

 , (2.2)

where S = {X,Y}, which is a data matrix that contains information on both H and D populations, ‘c’
is the cutoff and the vector ‘b’ contains ‘p’ coefficients, which are obtained through equation (2.3)
and is the minimax procedure (Anderson and Bahadur, 1962),

b = [tΣD + (1 − t)ΣH]−1 (µD − µH) (2.3)

where ‘t’ is constant and is determined by the trial and error method in the interval 0 and 1. Using
equation (2.1), we obtain c = b

′

µH +
√

b′ΣHb Φ−1(1 − FPR), and the MROC expression is

ROC(c) = Φ

b
′

(µD − µH) −
√

b′ΣHb Φ−1 (1 − FPR)√
b′ΣDb

 . (2.4)

Using probabilistic notations, the AUC expression for the MROC will be

∆ = Φ

 b
′

(µD − µH)√
b′ (ΣD + ΣH)b

 . (2.5)

Under the MROC curve framework, the linear combination that acts as a classifier is

U = b
′

Z,

where b
′

= [b1, b2, . . . , bk]. Here, if U > c then it is classified to the D population.
The maximum likelihood estimator of ∆ is

∆̂ = Φ

 b̂
′

(µ̂D − µ̂H)√
b̂′

(
Σ̂D + Σ̂H

)
b̂

 , (2.6)

where b̂ = [t Σ̂D + (1 − t) Σ̂H]−1 (µ̂D − µ̂H) and Σ̂H , Σ̂D are the estimated sample covariance matrices
of the H and D populations. Using the Taylor series expansion, it can be easily shown that E(∆̂) =

∆+O(n∗
−1

); where n∗ = min(m, n), and m and n are the number of samples in the H and D populations,
respectively.

2.2. Proposed bias-corrected approximation

If the observations are measured with error, then the ‘true’ values of the X and Y will be masked and
the parameter estimates may not be reliable to proceed further in order to classify the individuals. In
a notational manner, we define the affected variables as,

Ai = Xi + Σε , i = 1, 2, . . . ,m,
B j = Y j + Ση, j = 1, 2, . . . , n,
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where ε ∼ N(0, b
′

Σεb) and η ∼ N(0, b
′

Σηb). The assumption of equal covariances of Σε and Ση is not
necessary, but in many instances, it is justified that the variations leading to measurement errors are
due to laboratory errors, and do not depend on the individual’s risk or the true variable value. The
AUC of a MROC curve in the presence of a measurement error will be

∆∗ = Φ

 b
′

(µB − µA)√
b′ (ΣB + ΣA) b

 (2.7)

and the likelihood estimator for ∆∗ is

∆̂∗ = Φ

 b̂
′
(
B̄ − Ā

)
√

b̂′
(
Σ̂B + Σ̂A

)
b̂

 , (2.8)

where Σ̂A, Σ̂B are the estimated sample covariance matrices of the populations A and B. Here B̄ and
Ā are the estimated sample mean vectors of the B and A populations, respectively. In order to correct
the bias in ∆̂∗, let δ = ε − η ∼ N(0, b

′

Σεb + b
′

Σηb) and the unbiased estimate of ∆̂∗ can be written in
the following form (Coffin and Sukhatme, 1996),

E
(
∆̂∗

)
' P(Y > X + δ)

'

"
[1 −GY (s + t)] fX(s) fδ(t)dxds

' ∆ −
E(δδ

′

)
2

∫
g′Y (s) fX(s)ds

E
[
∆̂∗

]
' ∆ + (−Ω),

where Ω = E(δδ
′

)/2
∫

g′Y (s) fX(s)ds, GY (·) is the cdf of Y and fδ(·) is the density function of the
distribution of δ. In this case, gY (·) and fX(·) denote the multivariate normal densities of the D and H
populations, respectively. Thus, the Ω component reduces to

Ω =
E(δδ

′

)
2

∫
g′Y (s) fX(s)ds

=
1
2

b
′

(Σε + Ση)
√

2πK

(
b
′

(µD − µH)
√

K

)
exp

−1
2

(
b
′

(µD − µH)
√

K

)2 , (2.9)

where K = b
′

(ΣD + ΣH)b.
Using the unbiased estimates Ȳ and X̄ of µD and µH in equation (2.9), gives us the expression of

Ω as,

Ω̂ =
b
′
(
Σ̂ε + Σ̂η

)
2
√

2π(τ)

b
′
(
Ȳ − X̄

)
√
τ

 exp

−1
2

b
′
(
Ȳ − X̄

)
√
τ


2 ,

where τ = b
′

[(Σ̂D + Σ̂H) − (Σ̂ε + Σ̂η)]b, then the bias-corrected estimator of ∆ is

∆̃ = ∆̂∗ + Ω̂, (2.10)
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Table 1: X1 ∼ MVN(µµµH ,ΣH), X2 ∼ MVN(µµµD,ΣD)

Sets µH µD ΣH ΣD

A
(
17.9
16.2

) (
20.8
18.0

) (
2 1
1 4

) (
2 1
1 6

)
B

(
20.8
18.0

) (
20.8
18.0

) (
2 1
1 4

) (
2 1
1 4

)
C

(
17.9
16.2

) (
20.8
18.0

) (
2 1
1 4

) (
2 1
1 4

)
D

(
20.8
18.0

) (
20.8
18.0

) (
2 1
1 4

) (
2 1
1 6

)

which is the corrected estimator for ∆ in the presence of measurement errors.
To demonstrate the proposed methodology and to showcase the behaviour of Σε and Ση, simula-

tions for different cases were carried out and are presented in the next section. The three different
cases are:

1. both Σε and Ση have common variances, i.e., Σε = Ση = (σ2),

2. both Σε and Ση have different variances, i.e., Σε = Ση = (σ2
i ); i = 1, 2, . . . , n,

3. and some of the markers does not get influenced by the measurement errors. For instance, let there
be four markers M1,M2,M3, and M4, and of these, if M2 does not get influenced with measurement
error, then the covariance matrix is given by (assuming equal variances for the remaining markers),

Σε = Ση =


σ2 0 0 0

0 0 0
σ2 0

σ2

 .
3. Simulation study I

For each case of the error covariance matrices, Monte-Carlo simulations were performed to assess
the behavior of the proposed bias-corrected estimator under the structure of a bivariate normal dis-
tribution. In Table 1, four sets are considered, and sets A & C are defined to explain the case of
better classification with unequal and equal covariance matrices, respectively. Sets B & D are de-
fined with equal mean vectors; and equal and unequal covariance matrices, respectively, which are
considered in order to explain the worst-case scenarios. In each population, random samples of size
n = {25, 50, 100, 200, 500} were generated using the parameter values defined in the four sets.

• Case (i) Both Σε = Ση = (σ2)

In this case, it is assumed that both the error covariance matrices have same variances.

i.e., Σε = Ση =

(
1.3 0.0
0.0 1.3

)
.

Table 2 contains the estimated values of the AUC, with and without ME, and also bias-corrected AUC.
The discrepancy in the AUC is observed through the bias and MSE.

The results of set A & C (better classification) show that the estimated AUCs are downward,
whereas the worst-case scenario (set B & D) shows that, the AUC’s are overestimated at smaller
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Table 2: The Bias and MSE of the estimated and bias-corrected estimator of ∆ for case (i)

Sets ∆ n ∆̂ Bias MSE ∆̃ Bias MSE(95% CI) (95% CI)

A 0.92423

25 0.89002
−0.03420 0.00312 0.93697 0.01274 0.00025(0.85802, 0.92202) (0.90137, 0.97257)

50 0.88943
−0.03479 0.00281 0.93153 0.00730 0.00008(0.87713, 0.90173) (0.91003, 0.95303)

100 0.87569
−0.04854 0.00240 0.92880 0.00457 0.00004(0.84358, 0.90780) (0.89635, 0.96125)

200 0.87047
−0.05376 0.00212 0.92590 0.00167 0.00004(0.83806, 0.90288) (0.88060, 0.97120)

500 0.86817
−0.05605 0.00203 0.92317

−0.00106 0.00002(0.82586, 0.91048) (0.88330, 0.96304)

B 0.53510

25 0.60483 0.06973 0.00914 0.56306 0.02796 0.00645(0.58263, 0.62703) (0.53319, 0.59293)

50 0.57328 0.03818 0.00363 0.54836 0.01326 0.00241(0.54115, 0.60541) (0.50606, 0.59066)

100 0.54849 0.01339 0.00119 0.54176 0.00666 0.00058(0.52717, 0.56981) (0.51855, 0.56497)

200 0.53479
−0.00031 0.00040 0.53803 0.00293 0.00010(0.51583, 0.55375) (0.50236, 0.57370)

500 0.52244
−0.01266 0.00015 0.53561 0.00051 0.00001(0.48984, 0.55504) (0.48983, 0.58139)

C 0.91739

25 0.89497
−0.02242 0.00626 0.92990 0.01251 0.00012(0.86559, 0.92435) (0.89708, 0.96272)

50 0.88766
−0.02973 0.00409 0.92613 0.00874 0.00005(0.86817, 0.90715) (0.89764, 0.95463)

100 0.87080
−0.0466 0.00397 0.92390 0.00651 0.00004(0.84513, 0.89647) (0.89052, 0.95728)

200 0.87304
−0.04435 0.00358 0.92241 0.00502 0.00001(0.83850, 0.90758) (0.89394, 0.95089)

500 0.86734
−0.05005 0.00346 (0.91192

−0.00547 0.00001(0.84389, 0.89079) (0.87238, 0.95147)

D 0.54013

25 0.59050 0.05037 0.01066 0.56918 0.02905 0.00653(0.55598, 0.62502 (0.54354, 0.59482)

50 0.58075 0.04062 0.00948 (0.55336 0.01323 0.00418(0.54052, 0.62098) (0.53350, 0.57322)

100 0.54189 0.00176 0.00782 (0.54412 0.00399 0.00040(0.49611, 0.58767) (0.52217, 0.56607)

200 0.52177
−0.01836 0.00091 (0.54256, 0.00243 0.00028(0.48752, 0.55602) (0.52022, 0.56491)

500 0.51717
−0.02296 0.00034 0.54019 0.00006 0.00001(0.47696, 0.55738) (0.51081, 0.56957)

sample sizes. This will provide an observation that at smaller sample sizes, the corrected AUC is
overestimated; and with large samples, true estimates of the corrected AUC are witnessed. This refers
to the phenomenon that with moderate and large sample sizes, the bias-corrected estimator of AUC
(∆̃) has a smaller bias and is closer to the true AUC values (∆). The same scenario is observed in all
three cases.

The graphical representations of the ROC plots for the true MROC model and the MROC models
(errors in the data) at various sample sizes are shown in Figure 1. These graphs depict that the actual
performance of the classifier is affected due to the ME. Once, we correct the MROC model, then the
accuracy curve will be restored using bias-corrected estimator.
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Figure 1: The true MROC curve and the estimated MROC curves at various sample sizes under case (i).

• Case (ii) Σε and Ση have different variances

In this case, the bivariate error covariance matrices are considered with the assumption that the mark-
ers possess different variances.

i.e.,Σε = Ση =

(
2.0 0.0
0.0 2.8

)
.

In this case as well, and in consideration of the error covariance matrices, four datasets are generated
at various sample sizes and the AUC is obtained, before and after correction, as shown in Table 3.
The results show that the bias-corrected estimator has less bias and MSE compared with the estimated
AUCs and is closer to the true AUC measure. The true MROC curve and the estimated MROC curves
in the presence of measurement errors for these simulations at various sample sizes are presented in
Figure 2.

• Case (iii) Some of the markers are measured correctly

This case is quite different, because it is considered that one of the markers of the bivariate error
covariance matrices possesses a measurement error.

i.e., Σε = Ση =

(
2 0
0 0

)
.

Table 4, shows the results of the estimated and the bias-corrected estimator of AUCs compared with
the true AUC values, which show the MSE of the corrected estimator being smaller than the estimated
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Table 3: The Bias and MSE of the estimated and bias-corrected estimator of ∆ for case (ii)

Sets ∆ n ∆̂ Bias MSE ∆̃ Bias MSE(95% CI) (95% CI)

A 0.92423

25 0.87353
−0.05069 0.00529 0.94926 0.02503 0.00049(0.83901, 0.90805) (0.92888, 0.96963)

50 0.86818
−0.05605 0.00433 0.94046 0.01623 0.00035(0.83818, 0.89817) (0.90405, 0.97687)

100 0.86032
−0.06390 0.00352 0.93528 0.01105 0.00028(0.84320, 0.87745) (0.90264, 0.96793)

200 0.85940
−0.06483 0.00309 0.93023 0.00600 0.00011(0.82668, 0.89213) (0.89664, 0.96382)

500 0.84210
−0.08213 0.00212 0.92683 0.00260 0.00010(0.81741, 0.86679) (0.90754, 0.94611)

B 0.53510

25 0.59206 0.05696 0.00496 0.57094 0.03584 0.00173(0.56714, 0.61697) (0.55052, 0.59137)

50 0.58826 0.05316 0.00295 0.56245 0.02735 0.00043(0.55361, 0.62291) (0.54086, 0.58404)

100 0.54983 0.01473 0.00070 0.55204 0.01694 0.00021(0.52790, 0.57176) (0.52217, 0.58192)

200 0.53296
−0.00214 0.00053 0.53639 0.00129 0.00001(0.51473, 0.55119) (0.49942, 0.57335)

500 0.52050
−0.01460 0.00055 0.53401

−0.00109 0.00001(0.48540, 0.55560) (0.50394, 0.56408)

C 0.91739

25 0.86526
−0.05213 0.00633 0.93421 0.01682 0.00040(0.84328, 0.88725) (0.90606, 0.96237)

50 0.85923
−0.05816 0.00467 0.92941 0.01202 0.00028(0.84550, 0.87296) (0.89489, 0.96392)

100 0.85854
−0.05886 0.00493 0.92225 0.00486 0.00020(0.84813, 0.86894) (0.88653, 0.95797)

200 0.84928
−0.06811 0.00530 0.92085 0.00346 0.00002(0.81161, 0.88695) (0.89322, 0.94848)

500 0.84749
−0.06990 0.00451 0.91952 0.00213 0.00001(0.82754, 0.86745) (0.88849, 0.95055)

D 0.54013

25 0.58934 0.04921 0.00549 0.56426 0.02413 0.00032(0.55650, 0.62218) (0.52346, 0.60506)

50 0.57383 0.03370 0.00531 0.55892 0.01879 0.00024(0.53023, 0.61743) (0.53249, 0.58536)

100 0.55490 0.01477 0.00067 0.55424 0.01411 0.00024(0.52821, 0.58160) (0.53557, 0.57291)

200 0.53903
−0.00110 0.00048 0.54935 0.00922 0.00002(0.50402, 0.57404) (0.51690, 0.58180)

500 0.53323
−0.00690 0.00034 0.54053 0.00040 0.00000(0.49676, 0.56970) (0.51069, 0.57038)

AUCs. From the results, it is understood that the involvement of measurement errors in any one of the
markers may influence the outcome of the MROC model. The graphical representations of the ROC
plots for the true MROC model and the estimated MROC models at various sample sizes are shown
in Figure 3.

The idea behind considering three cases, that is equal, unequal and the absence of error variance
for one variable, is to observe the impact on the AUC. It was noticed that under equal and unequal
variance cases, the AUC was impacted significantly and attained a lower value than the true AUC.
However, pertaining to case (iii), the impact was less with a lower AUC value and the same was
reflected in the MSE. Therefore, if the measurement error is not observed in one variable, then the
deviation from the true AUC will not be that significant. The MSE values observed at different sample
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Figure 2: The true MROC curve and the estimated MROC curves at various sample sizes under case (ii).
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Figure 3: The true MROC curve and the estimated MROC curves at various sample sizes under case (iii).
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Table 4: The Bias and MSE of the estimated and bias-corrected estimator of ∆ for case (iii)

Sets ∆ n ∆̂ Bias MSE ∆̃ Bias MSE(95% CI) (95% CI)

A 0.92423

25 0.88812
−0.03610 0.00618 0.94036 0.01613 6.3441E-05(0.86489, 0.91135) (0.90499, 0.97573)

50 0.87646
−0.04777 0.00545 0.93913 0.01490 5.3107E-05(0.85460, 0.89832) (0.90010, 0.97816)

100 0.87434
−0.04989 0.00508 0.92535 0.00112 4.8620E-06(0.83115, 0.91753) (0.88588, 0.96482)

200 0.87110
−0.05313 0.00438 0.92513 0.00091 4.1177E-07(0.83725, 0.90495) (0.90138, 0.94888)

500 0.87016
−0.05407 0.00402 0.92487 0.00064 3.7878E-07(0.83251, 0.90781) (0.88050, 0.96924)

B 0.53510

25 0.59041 0.05531 0.00543 0.54987 0.01477 5.3684E-03(0.56411, 0.61671) (0.50897, 0.59077)

50 0.58717 0.05207 0.00396 0.54925 0.01415 4.5187E-04(0.54573, 0.62861) (0.51356, 0.58494)

100 0.56820 0.03310 0.00034 0.53926 0.00416 1.7718E-04(0.53201, 0.60439) (0.51154, 0.56698)

200 0.53102
−0.00408 0.00034 0.53537 0.00027 1.1523E-05(0.50315, 0.55889) (0.49715, 0.57359)

500 0.51230
−0.02280 0.00029 0.53353

−0.00157 1.2883E-04(0.47108, 0.55352) (0.50126, 0.56580)

C 0.91739

25 0.87930
−0.03809 0.00559 0.93482 0.01743 6.9813E-06(0.85113, 0.90747) (0.91168, 0.95796)

50 0.87847
−0.03892 0.00490 0.93204 0.01465 4.3485E-06(0.84002, 0.91692) (0.90058, 0.96350)

100 0.86513
−0.05226 0.00410 0.92860 0.01121 4.0867E-06(0.82578, 0.90448) (0.88347, 0.97373)

200 0.85684
−0.06055 0.00375 0.92369 0.00630 1.5410E-06(0.81538, 0.89830) (0.88675, 0.96063)

500 0.84321
−0.07418 0.00302 0.91265

−0.00474 1.0254E-06(0.81202, 0.87440) (0.87645, 0.94885)

D 0.54013

25 0.60943 0.06930 0.00571 0.57233 0.03220 5.8768E-03(0.56631, 0.65255) (0.52868, 0.61598)

50 0.58236 0.04223 0.00502 0.56507 0.02494 5.5041E-04(0.54632, 0.61840) (0.53418, 0.59596)

100 0.56915 0.02902 0.00041 0.54398 0.00385 2.1186E-06(0.53051, 0.60779) (0.50491, 0.58305)

200 0.54549 0.00536 0.00037 0.54136 0.00123 1.5418E-06(0.51695, 0.57403) (0.50652, 0.57620)

500 0.52201
−0.01812 0.00030 0.54053 0.00040 1.1863E-06(0.48773, 0.55629) 0.49951 0.58155

sizes in case (iii) were slightly lower compared to the MSE values in case (i) and (ii), respectively.
Parallel to this, the influence of the sample size was also observed and resulted in the overestimated
values of corrected AUCs at smaller sample sizes, while the corrected AUCs were closer to the true
AUC at moderate (n = 100) and large samples. This scenario was noticed in all three cases.

4. Simulation study II (with the real dataset)

In this section, the Vertebral Column dataset (Guilherme and Ajalmar, 2011), which consists of 310
samples and three categories, namely Normal, Disk Hernia and Spondylolisthesis, is considered. The
MROC curve analysis is confined to binary classification, so for illustration purposes, the same dataset
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Table 5: Error covariance matrices for both the populations of DH and SP datasets

(i) Disk Hernia dataset (ii) Spondylolisthesis dataset

16.4 0.0 0.0 0.0 0.0 0.0
23.5 0.0 0.0 0.0 0.0

19.2 0.0 0.0 0.0
18.9 0.0 0.0

21.9 0.0
26.5





34.6 0.0 0.0 0.0 0.0 0.0
36.4 0.0 0.0 0.0 0.0

38.9 0.0 0.0 0.0
38.7 0.0 0.0

36.9 0.0
31.9


Table 6: Bias and MSE of the estimated and the bias-corrected estimator of AUC of the Disk Hernia dataset

Dataset ∆ ∆̂ Bias MSE ∆̃ Bias MSE
Disk Hernia 0.896123 0.868275 −0.027849 0.000776 0.897044 0.000921 0.000001

Spondylolisthesis 0.947690 0.938546 −0.009144 0.000084 0.947007 −0.000683 0.000000

is subdivided into two datasets, such as the Disk Hernia dataset and Spondylolisthesis dataset, respec-
tively.

1. Disk Hernia (DH) contains a total of 160 samples, and of these, 100 samples belong to normal
subjects and the rest are disk hernia subjects.

2. Spondylolisthesis (SP) has 250 samples, and of these, 100 are normal subjects and the remaining
150 samples belong to Spondylolisthesis subjects.

Each dataset has six attributes, namely, pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral
slope, pelvic radius, and the grade of spondylolisthesis. In order to show the working nature of the
methodology, error covariance matrices are considered for both the DH and SP population datasets
(Table 5). Random samples are generated using these error covariances matrices and are added to the
actual observations in the data. This gives us a situation where the variables in the dataset are affected
due to measurement error.

The proposed bias-corrected estimator, true AUC and related measures were estimated and pre-
sented in Table 6. Here ∆ denotes the AUC of the original dataset and ∆̂ is the AUC obtained after the
inclusion of error observations. This clearly indicates that when the variables are affected by measure-
ment error, then the true AUC may not be observed because the bias depicts the difference from the
information that got masked due the presence of measurement error. Additionally, ∆̃ is the AUC after
the correction. Therefore, the bias-corrected estimator has helped in retaining the true AUC value. In
the Disk Hernia dataset, the ∆ (0.896123) and ∆̃ (0.897044) are very close and the same is true for
MSE (0.000001). Hence, the proposed estimator helps in obtaining the true estimate of AUC, even
if the data is influenced by measurement error. Similar kinds of results are obtained with respect to
the SP dataset. In this case as well, the ∆ (0.947690) and ∆̃ (0.947007) are very close and the MSE is
almost equal to zero.

These results show that by adding error observations to the variables, the accuracy was affected.
In such situations, using the bias-corrected estimator can achieve the true accuracy values, which
have less bias and MSE when compared to the estimated AUC. With the support of bias and MSE
values, there is a clear need to correct the bias to estimate the AUC in the presence of measurement
errors in the data. In Figure 4, the MROC plots are drawn for the two datsets, both before and after
the correction of AUC. In the MROC curves for both datasets, it is clear that the performance of
the classifier got affected in the presence of measurement errors. To demonstrate the application of
the proposed methodology mentioned above, random samples have been generated using the error
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Figure 4: True and estimated MROC curves for (a) the Disk Hernia dataset and (b) the Spondylolisthesis dataset.

covariance matrices, which is a limitation because getting a real dataset with observed measurement
errors was difficult. However, our attempt in generating random samples through error covariance
matrices showed that the proposed methodology works well if the data contains measurement errors.
Hence, we treated this exercise as a simulation study using a real dataset.

5. Summary

In this paper, discussions were focused on the influence of measurement errors that affect the perfor-
mance of the MROC curve. When the data possesses measurement errors, the AUC will be biased
downward. To address this, a bias-corrected estimator is derived and shown to work with simulated
and real datasets, even if measurement errors are present in the data, without any loss of information to
determine the true AUC value. To mimic the existence of measurement error, the error covariance ma-
trices were added to the original DH and SP datasets and the measures of the MROC, bias-corrected
estimator (∆̃) were computed. In each instance, the results were similar. The bias of the corrected
estimator ∆̃ was much smaller than the bias of ∆̂, and thus, the bias in estimating ∆ was reduced with-
out inflating the mean squared error. Therefore, by using the bias-corrected estimator, it is possible to
quantify the deviation of the true accuracy. The results reveal that the proposed estimate works well
in retaining the true accuracy of the classifier.
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