• Title/Summary/Keyword: stationary random variable

Search Result 14, Processing Time 0.036 seconds

A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION

  • Ko, Mi-Hwa
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.91-99
    • /
    • 2010
  • In this paper we introduce the concept of asymptotically almost negatively associated random variables in a Hilbert space and obtain the strong law of large numbers for a strictly stationary asymptotically almost negatively associated sequence of H-valued random variables with zero means and finite second moments. As an application we prove a strong law of large numbers for a linear process generated by asymptotically almost negatively random variables in a Hilbert space with this result.

A New Estimator for Seasonal Autoregressive Process

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • For estimating parameters of possibly nonlinear and/or non-stationary seasonal autoregressive(AR) processes, we introduce a new instrumental variable method which use the direction vector of the regressors in the same period as an instrument. On the basis of the new estimator, we propose new seasonal random walk tests whose limiting null distributions are standard normal regardless of the period of seasonality and types of mean adjustments. Monte-Carlo simulation shows that he powers of he proposed tests are better than those of the tests based on ordinary least squares estimator(OLSE).

  • PDF

ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa;Kim, Tae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.133-140
    • /
    • 2008
  • Let {${\xi}_k,\;k\;{\in}\;{\mathbb{Z}}$} be a strictly stationary associated sequence of H-valued random variables with $E{\xi}_k\;=\;0$ and $E{\parallel}{\xi}_k{\parallel}^2\;<\;{\infty}$ and {$a_k,\;k\;{\in}\;{\mathbb{Z}}$} a sequence of linear operators such that ${\sum}_{j=-{\infty}}^{\infty}\;{\parallel}a_j{\parallel}_{L(H)}\;<\;{\infty}$. For a linear process $X_k\;=\;{\sum}_{j=-{\infty}}^{\infty}\;a_j{\xi}_{k-j}$ we derive that {$X_k} fulfills the functional central limit theorem.

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

Effects of Phenotypic Variation on Evolutionary Dynamics

  • Kang, Yung-Gyung;Park, Jeong-Man
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1774-1786
    • /
    • 2018
  • Phenotypic variation among clones (individuals with identical genes, i.e. isogenic individuals) has been recognized both theoretically and experimentally. We investigate the effects of phenotypic variation on evolutionary dynamics of a population. In a population, the individuals are assumed to be haploid with two genotypes : one genotype shows phenotypic variation and the other does not. We use an individual-based Moran model in which the individuals reproduce according to their fitness values and die at random. The evolutionary dynamics of an individual-based model is formulated in terms of a master equation and is approximated as the Fokker-Planck equation (FPE) and the coupled non-linear stochastic differential equations (SDEs) with multiplicative noise. We first analyze the deterministic part of the SDEs to obtain the fixed points and determine the stability of each fixed point. We find that there is a discrete phase transition in the population distribution when the probability of reproducing the fitter individual is equal to the critical value determined by the stability of the fixed points. Next, we take demographic stochasticity into account and analyze the FPE by eliminating the fast variable to reduce the coupled two-variable FPE to the single-variable FPE. We derive a quasi-stationary distribution of the reduced FPE and predict the fixation probabilities and the mean fixation times to absorbing states. We also carry out numerical simulations in the form of the Gillespie algorithm and find that the results of simulations are consistent with the analytic predictions.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

Dimension-reduction simulation of stochastic wind velocity fields by two continuous approaches

  • Liu, Zhangjun;He, Chenggao;Liu, Zenghui;Lu, Hailin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.389-403
    • /
    • 2019
  • In this study, two original spectral representations of stationary stochastic fields, say the continuous proper orthogonal decomposition (CPOD) and the frequency-wavenumber spectral representation (FWSR), are derived from the Fourier-Stieltjes integral at first. Meanwhile, the relations between the above two representations are discussed detailedly. However, the most widely used conventional Monte Carlo schemes associated with the two representations still leave two difficulties unsolved, say the high dimension of random variables and the incompleteness of probability with respect to the generated sample functions of the stochastic fields. In view of this, a dimension-reduction model involving merely one elementary random variable with the representative points set owing assigned probabilities is proposed, realizing the refined description of probability characteristics for the stochastic fields by generating just several hundred representative samples with assigned probabilities. In addition, for the purpose of overcoming the defects of simulation efficiency and accuracy in the FWSR, an improved scheme of non-uniform wavenumber intervals is suggested. Finally, the Fast Fourier Transform (FFT) algorithm is adopted to further enhance the simulation efficiency of the horizontal stochastic wind velocity fields. Numerical examplesfully reveal the validity and superiorityof the proposed methods.

Parameter Learning of Dynamic Bayesian Networks using Constrained Least Square Estimation and Steepest Descent Algorithm (제약조건을 갖는 최소자승 추정기법과 최급강하 알고리즘을 이용한 동적 베이시안 네트워크의 파라미터 학습기법)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.164-171
    • /
    • 2009
  • This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.