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ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE
LINEAR PROCESS GENERATED BY ASSOCIATED

RANDOM VARIABLES IN A HILBERT SPACE

Mi-Hwa Ko and Tae-Sung Kim

Abstract. Let {ξk, k ∈ Z} be a strictly stationary associated sequence of
H-valued random variables with Eξk = 0 and E‖ξk‖2 < ∞ and {ak, k ∈
Z} a sequence of linear operators such that

P∞
j=−∞ ‖aj‖L(H) < ∞. For

a linear process Xk =
P∞

j=−∞ ajξk−j we derive that {Xk} fulfills the

functional central limit theorem.

1. Introduction

Let H be a separable real Hilbert space with the norm ‖ · ‖H generated by
an inner product, 〈·, ·〉H and let {ek, k ≥ 1} be an orthonormal basis in H.
Let L(H) be the class of bounded linear operators from H to H and denote
by ‖ · ‖L(H) its usual norm. Let {ξk, k ∈ Z} be a strictly stationary sequence
of H-valued random variables, and {ak, k ∈ Z} be a sequence of operators,
ak ∈ L(H). We define the stationary Hilbert space process by:

(1.1) Xk =
∞∑

j=−∞
ajξk−j , k ∈ Z.

The sequence {Xk, k ∈ Z} is a natural extension of the multivariate linear
processes (Brockwell and Davis [5], Chap. 11). These types of processes with
values in functional spaces also facilitate the study of estimation and forecasting
problems for several classes of continuous time processes. For more details see
Bosq [3].

We define

(1.2) Wn(t) = n−
1
2

[nt]∑

k=1

Xk, t ∈ [0, 1].
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When {ξk, k ∈ Z} is a sequence of H-valued i.i.d. random variables such
that E‖ξk‖2 < ∞ and Eξk = 0 if

∑∞
j=−∞ ‖aj‖L(H) < ∞, then the series in

(1.1) converges almost surely and in L1(H) (Denisevskii and Dorogovtsev [8]).
Moreover, Xk satisfies a functional central limit theorem (Bosq [3]) and the
Berry-Esseen inequality (Bosq [4]).

A sequence {ξi, 1 ≤ i ≤ n} of real-valued random variables is said to be
associated if for any coordinatewise increasing functions f, g : Rn → R

Cov(f(ξ1, . . . , ξn), g(ξ1, . . . , ξn)) ≥ 0

whenever this exists. Associated sequences are widely encountered in applica-
tions; e.g. in reliability, in mathematical physics and percolation theory (c.f.
Barlow and Proschan [1], Newman [11], Cox and Grimmett [7]). Newman [11]
proved the central limit theorem, Newman and Wright [12] extended this to a
functional central limit theorem.

Recently Kim and Ko [10] derived a functional central limit theorem for the
linear process generated by associated random variables as follows.

Theorem 1.1 (Kim and Ko [10]). Let {ξk} be a strictly stationary sequence
of centered and associated random variables having finite second moment and
let {ak} be a sequence of numbers such that

∞∑

j=−∞
|aj | < ∞.

Define Xk by (1.1), Wn by (1.2) and assume

σ2 = Eξ2
1 + 2

∞∑

j=2

E(ξ1ξj) < ∞.

Then, as n →∞
Wn(t) ⇒ W 1,

where ⇒ indicates weak convergence and W 1 is a Wiener process with variance
(
∑∞

j=−∞ aj)2σ2.

In the studying the infinite-dimensional case, our question is to what extent
Theorem 1.1 remains valid in the new context when we replace {ξk} by an
infinite-dimensional space valued random variables, the constants by linear
bounded operators and absolute values by the corresponding norms. To see
new possible quality effects, we consider a simplest case of infinite dimensional
Hilbert space H in this paper.

2. Preliminaries

Theorem 2.1 (Newman, Wright [12]). Let {ξ1, . . . , ξm} be a sequence of as-
sociated random variables with E|ξi|2 < ∞ and Eξi = 0 i ≥ 1, and let
Mm = max(S1, . . . , Sm), where Sm = ξ1 + · · ·+ ξm. Then

(2.1) E(M2
m) ≤ E(Sm).
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As the notion of weakly associated random vectors in Burton et al. [6], we
introduce the concept of associated random vectors.

Definition 2.2. A finite sequence {ξi, 1 ≤ i ≤ n} of Rd-valued random
vectors is said to be associated if for all coordinatewise increasing functions
f, g : Rnd → R, Cov(f(ξ1, . . . , ξn), g(ξ1, . . . , ξn)) ≥ 0 whenever this is defined.
An infinite family of Rd-valued random vectors is associated if every finite
subfamily is associated.

From the functional central limit theorem of weakly associated random vec-
tors in Burton et al. [6], we can obtain the following functional central limit
theorem for stationary associated random vectors.

Theorem 2.3. Let {ξi, i ≥ 1} be a strictly stationary associated sequence of
Rd-valued random vectors with Eξ1 = O and E‖ξ1‖2 < ∞. If

(2.2) σ2 = E‖ξ1‖2 + 2
∞∑

i=2

d∑

j=1

E(ξ1jξij) < ∞

then, as n →∞

(2.3) n−
1
2

[nt]∑

i=1

ξi ⇒ W d,

where W d is a d-dimensional Wiener process with covariance matrix Γ = [σkj ],

(2.4) σkj = E(ξ1kξ1j) +
∞∑

i=2

[E(ξ1kξij) + E(ξ1jξik)].

From Definition 2.2 we consider the following notion:

Definition 2.4 (Burton et al. [6]). Let {ξi, i ≥ 1} be a sequence of random
variables taking values in a separable Hilbert space H. {ξi, i ≥ 1} is called
associated if for some orthonormal basis {ek, k ≥ 1} in H and for any d ≥ 1
the d-dimensional sequence (〈ξi, e1〉, . . . , 〈ξi, ed〉), i ≥ 1, is associated.

Definition 2.5 (Burton et al. [6]). Let {ξi, i ≥ 1} be a strictly stationary
associated sequence H-valued random variables with Eξ1 = 0 and E‖ξ1‖2 < ∞.
If

(2.5) σ2 = E‖ξ1‖2 + 2
∞∑

i=2

E(〈ξ1, ξi〉) < ∞,

then

n−
1
2

[nt]∑

i=1

ξi ⇒ W,
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where W is a Wiener process on H with covariance operator Γ = (σkl), k, l =
1, 2, . . .,

(2.6)
σkl = E(〈ek, ξ1〉〈el, ξ1〉) +

∞∑

i=2

[E(〈ek, ξ1〉〈el, ξi〉)

+ E(〈el, ξ1〉〈ek, ξi〉)].

3. Main results

To prove the main theorem we need the following lemmas:

Lemma 3.1. Let {ξk, k ∈ Z} be a strictly stationary associated sequence of H-
valued random variables with Eξ1 = 0 and E‖ξ1‖2 < ∞ and {ck} be a sequence
of bounded linear operators satisfying

(3.1)
∞∑

j=−∞
‖cj‖L(H) < ∞.

If (2.5) holds, then there is a constant K such that, for every −∞ < p < q < ∞,

(3.2) E‖
q∑

j=p

cjξj‖2H ≤ K(
q∑

j=p

‖cj‖2L(H)).

Proof. By stationarity, (2.5), and the facts that ‖cjξj‖H ≤ ‖cj‖L(H)‖ξj‖H and
E(〈ξi, ξj〉) ≥ 0 we have

E‖
q∑

j=p

cjξj‖2H ≤
q∑

j=p

‖cj‖2L(H)E‖ξj‖2H

+2
q−1∑

i=p

q∑

j=i+1

‖ci‖L(H)‖cj‖L(H)E(〈ξi, ξj〉)

≤
q∑

j=p

‖cj‖2L(H)E‖ξj‖2H + 2
∞∑

j=2

E〈ξ1, ξj〉(
q∑

j=p

‖cj‖2L(H))

≤ K(
q∑

j=p

‖cj‖2L(H)).

¤

Lemma 3.2. Let {bk, k ∈ Z} be a sequence of bounded linear operators in a
Hilbert space (H, ‖ · ‖H) such that

(3.3)
∞∑

k=−∞
‖bk‖L(H) < ∞
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and

(3.4)
∞∑

k=−∞
bk = 0.

Then we have

(3.5)
1
n

∞∑

j=−∞
‖

n−j∑

i=1−j

bi‖2L(H) → 0 as n →∞.

Proof. Denote by Dn =
∑
|j|≥n ‖bj‖L(H). By taking into account (3.3) we

observe that

(3.6)

1
n

∑

|j|≥2n

‖
n−j∑

i=1−j

bi‖2L(H) ≤ (
∑

|j|≥n

‖bj‖L(H))
1
n

∞∑

j=−∞
(

n−j∑

i=1−j

‖bi‖L(H))

= Dn

∞∑

j=−∞
‖bj‖L(H) → 0 as n →∞.

Now for a fixed x in the interval [−2, 2], we define

hn(x) = ‖
n−[nx]∑

i=1−[nx]

bi‖2L(H) .

One can easily see that, under the conditions (3.3) and (3.4), for every x 6= 1
we have hn(x) → 0, as n → ∞ and 0 ≤ hn(x) ≤ (

∑∞
j=−∞ ‖bi‖L(H))2. Hence

by Lebesgue’s dominated convergence theorem, we obtain

(3.7)
1
n

2n−1∑

j=−2n

‖
n−j∑

i=1−j

bi‖2H =
∫ 2

0

hn(x)dx → 0 as n →∞.

Therefore the conclusion (3.5) is a consequence of (3.6) and (3.7). ¤

Theorem 3.3. Let {ξk, k ∈ Z} be a strictly stationary associated sequence of
H-valued random variables with Eξ1 = 0 and E‖ξ1‖2 < ∞. Let {ak, k ∈ Z} be
a sequence of linear bounded operators such that

(3.8)
∞∑

j=−∞
‖aj‖L(H) < ∞.

If (2.5) holds, then

(3.9)
∑[nt]

k=1 Xk√
n

⇒ W,

where Xk is defined by (1.1), W is a Wiener process on H with covariance
operator AΓA∗, Γ is defined in Theorem 2.5, A =

∑∞
j=−∞ aj and A∗ denotes

the adjoint operator of A.
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Proof. First note that by Theorem 2.5 we have

(3.10)
A

∑[nt]
k=1 ξk√
n

→D W,

where W is a Wiener process on H with covariance operator AΓA∗ and that
from (1.1) we have

(3.11)
[nt]∑

k=1

Xk =
[nt]∑

k=1

∞∑
m=−∞

amξk−m =
∞∑

j=−∞
(
[nt]∑

k=1

ak−j)ξj .

It remains to show that

(3.12) n−
1
2 ‖

[nt]∑

k=1

Xk −A

[nt]∑

j=1

ξj‖ →p 0

by Billingsley [2], Theorem 4.1.
By partitioning the last sum in (3.11) into two sums, one with j between 1

and n, and another containing all the other terms, we get the representation

(3.13)
[nt]∑

k=1

Xk −A

[nt]∑

j=1

ξj =
∞∑

j=−∞
(
[nt]∑

k=1

bk−j)ξj ,

where

(3.14) b0 = a0 −A and bi = ai for |i| ≥ 1.

Now by Lemma 3.1 and Fatou Lemma, we deduce from (3.13)

(3.15)

1
n

E‖
[nt]∑

k=1

Xk −A

[nt]∑

j=1

ξj‖2H

≤ 1
[nt]

E‖
[nt]∑

k=1

Xk −A

[nt]∑

j=1

ξj‖2H

=
1

[nt]
E‖

∞∑

j=−∞
(
[nt]∑

k=1

bk−j)ξj‖2H

≤ K
1

[nt]

∞∑

j=−∞
‖

[nt]∑

k=1

bk−j‖2H

= K
1

[nt]

∞∑

j=−∞
‖

[nt]−j∑

i=1−j

bi‖2L(H).

Notice that the operators {bi, i ∈ Z} being defined by (3.14) satisfy the condi-
tions of Lemma 3.2. Therefore from (3.15), (3.12) follows by applying Lemma
3.2. ¤
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Remark. Obviously, Theorem 3.3 is an extension of Theorem 1.1 to a Hilbert
space.

From Theorem 3.3 we obtain the following result.

Corollary 3.4 (Kim et al. [9]). Let {ξk, k ∈ Z} be a strictly stationary
associated sequence of Rd-valued random vectors with Eξ1 = O and E‖ξ1‖2 <
∞ and let {Bj} be a sequence of matrix such that

∞∑

j=−∞
‖Bj‖ < ∞

∞∑

j=−∞
Bj 6= Od×d,

where for any d × d matrix B = (aij), ‖B‖ =
∑d

i=1

∑d
i=1 |aij | and Od×d

denotes the d × d zero matrix. Define Xk an Rd-valued linear process of the
form Xk =

∑∞
j=−∞Bjξk−j . If (2.2) holds, then

1√
n

[nt]∑

k=1

Xk ⇒ W d,

where W d is a d-dimensional Wiener process with covariance matrix T =
(
∑∞

j=−∞Aj)Γ(
∑∞

j=−∞Aj)
′
and Γ is defined in (2.4).
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