Browse > Article
http://dx.doi.org/10.12989/was.2019.29.6.389

Dimension-reduction simulation of stochastic wind velocity fields by two continuous approaches  

Liu, Zhangjun (School of Civil Engineering and Architecture, Wuhan Institute of Technology)
He, Chenggao (College of Civil Engineering & Architecture, China Three Gorges University)
Liu, Zenghui (School of Civil Engineering and Architecture, Wuhan Institute of Technology)
Lu, Hailin (School of Civil Engineering and Architecture, Wuhan Institute of Technology)
Publication Information
Wind and Structures / v.29, no.6, 2019 , pp. 389-403 More about this Journal
Abstract
In this study, two original spectral representations of stationary stochastic fields, say the continuous proper orthogonal decomposition (CPOD) and the frequency-wavenumber spectral representation (FWSR), are derived from the Fourier-Stieltjes integral at first. Meanwhile, the relations between the above two representations are discussed detailedly. However, the most widely used conventional Monte Carlo schemes associated with the two representations still leave two difficulties unsolved, say the high dimension of random variables and the incompleteness of probability with respect to the generated sample functions of the stochastic fields. In view of this, a dimension-reduction model involving merely one elementary random variable with the representative points set owing assigned probabilities is proposed, realizing the refined description of probability characteristics for the stochastic fields by generating just several hundred representative samples with assigned probabilities. In addition, for the purpose of overcoming the defects of simulation efficiency and accuracy in the FWSR, an improved scheme of non-uniform wavenumber intervals is suggested. Finally, the Fast Fourier Transform (FFT) algorithm is adopted to further enhance the simulation efficiency of the horizontal stochastic wind velocity fields. Numerical examplesfully reveal the validity and superiorityof the proposed methods.
Keywords
stochastic wind velocity field; continuous proper orthogonal decomposition; frequency-wavenumber spectral representation; dimension reduction; non-uniform wavenumber intervals; FFT algorithm;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Q. J. Roy. Meteor. Soc., 98, 563-589. https://doi.org/10.1256/smsqj.41706.   DOI
2 Kanwal, P. (1971), Linear Interval Equations, Academic Press, New York, NY, USA.
3 Khanduri, A.C., Stathopoulos, T. and Bedard, C. (1998), "Windinduced interference effects on buildings - a review of the state-of-the-art", Eng. Struct., 20(7), 617-630. https://doi.org/10.1016/s0141-0296(97)00066-7.   DOI
4 Li, J. and Chen, J.B. (2009), Stochastic Dynamics of Structures, John Wiley & Sons, Singapore.
5 Liu, Z.H., Liu, Z.J., He, C.G. and Lu, H.L. (2019), "Dimensionreduced probabilistic approach of 3-D wind field for windinduced response analysis of transmission tower", J. Wind Eng. Ind. Aerod., 190, 309-321. https://doi.org/10.1016/j.jweia.2019.05.013.   DOI
6 Liu, Z.J. and Liu, Z.H. (2018), "Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures", Mech. Syst. Signal Pr., 106, 511-525. https://doi.org/10.1016/j.ymssp.2018.01.011.   DOI
7 Liu, Z.J., Liu, W. and Peng, Y.B. (2016), "Random function based spectral representation of stationary and non-stationary stochastic processes", Probabilist. Eng. Mech., 45, 115-126. https://doi.org/10.1016/j.probengmech.2016.04.004.   DOI
8 Liu, Z.J., Liu, Z.H. and Peng, Y.B. (2018a), "Simulation of multivariate stationary stochastic processes using dimensionreduction representation methods", J. Sound Vib., 418, 144-162. https://doi.org/10.1016/j.jsv.2017.12.029.   DOI
9 Liu, Z.J., Liu, Z.X. and Chen, D.H. (2018b), "Probability density evolution of a nonlinear concrete gravity dam subjected to nonstationary seismic ground motion", J. Eng. Mech., 144(1), 04017157. https://doi.org/10.1061/(asce)em.1943-7889.0001388.   DOI
10 Liu, Z.J., Liu, Z.X. and Peng, Y.B. (2017), "Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes", J. Sound Vib., 408, 168-189. https://doi.org/10.1016/j.jsv.2017.07.016.   DOI
11 Peng, L.L., Huang, G.Q., Kareem, A. and Li, Y.L. (2016), "An efficient space-time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations", Probabilist. Eng. Mech., 43, 156-168. https://doi.org/10.1016/j.probengmech.2015.10.006.   DOI
12 Shinozuka, M. and Deodatis, G. (1996), "Simulation of multidimensional Gaussian stochastic fields by spectral representation", Appl. Mech. Rev., 49(1), 29-53. https://doi.org/10.1115/1.3101883.   DOI
13 Peng, Y.B., Wang, S.F. and Li, J. (2018), "Field measurement and investigation of spatial coherence for near-surface strong winds in Southeast China", J. Wind Eng. Ind. Aerod., 172, 423-440. https://doi.org/10.1016/j.jweia.2017.11.012.   DOI
14 Priestley, M.B. (1965), "Evolutionary spectra and non-stationary processes", J. R. Stat. Soc. B, 27(2), 204-237. https://doi.org/10.1111/j.2517-6161.1965.tb01488.x.
15 Shinozuka, M. (1971), "Simulation of multivariate and multidimensional random processes", J. Acoust. Soc. Am., 49(1), 357-368. https://doi.org/10.1121/1.1912338.   DOI
16 Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. https://doi.org/10.1016/0022-460X(72)90600-1.   DOI
17 Solari, G. and Carassale, L. (2001), "Model transformation tools in structural dynamics and wind engineering", Wind Struct., 3(4), 221-241. https://doi.org/10.12989/was.2000.3.4.221.   DOI
18 Song, Y.P., Chen, J.B., Peng, Y.B., Spanos, P.D. and Li, J. (2018), "Simulation of nonhomogeneous fluctuating wind speed field in two-spatial dimensions via an evolutionary wavenumberfrequency joint power spectrum", J. Wind Eng. Ind. Aerod., 179, 250-259. https://doi.org/10.1016/j.jweia. 2018.06.005.   DOI
19 Wu, Y.X., Gao, Y.F., Zhang, N. and Zhang, F. (2018), "Simulation of spatially varying non-Gaussian and nonstationary seismic ground motions by the spectral representation method", J. Eng. Mech., 144(1), 04017143. https://doi.org/10.1061/(asce)em.1943-7889.0001371.   DOI
20 Wu, Y.X., Gao, Y.F., Li, D.Y., Xu, C.J. and Mahfouz A.H. (2013), "Approximation approach to the SRM based on root decomposition in the simulation of spatially varying ground motions". Earthq. Eng. Eng. Vib., 12(3), 363-372. https://doi.org/10.1007/s11803-013-0178-9.   DOI
21 Yang, J.N. (1972), "Simulation of random envelope processes", J. Sound Vib., 21(1), 73-85. https://doi.org/10.1016/0022-460x(72)90207-6.   DOI
22 Zerva, A. (1992), "Seismic ground motion simulations from a class of spatial variability models", Earthq. Eng. Struct. D., 21(4), 351-361. https://doi.org/10.1002/eqe.4290210406.   DOI
23 Zhu, S.Y., Li, Y.L., Togbenou, K., Yu, C.J. and Xiang, T.Y. (2018), "Case study of random vibration analysis of train-bridge systems subjected to wind loads", Wind Struct., 27(6), 399-416. https://doi.org/10.12989/was.2018.27.6.399.   DOI
24 Zu, G.B. and Lam, K.M. (2018), "Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement", J. Wind Eng. Ind. Aerod., 177, 167-185. https://doi.org/10.1016/j.jweia.2018.04.019.   DOI
25 Chen, L.Z. and Letchford, C.W. (2005), "Simulation of multivariate stationary Gaussian stochastic processes: hybrid spectral representation and proper orthogonal decomposition approach", J. Eng. Mech., 131(8), 801-808. https://doi.org/10.1061/(asce)0733-9399(2005)131:8(801).   DOI
26 Benowitz, B.A. and Deodatis, G. (2015), "Simulation of wind velocities on long span structures: a novel stochastic wave based model". J. Wind Eng. Ind. Aerod., 147, 154-163. https://doi.org/10.1016/j.jweia.2015.10.004.   DOI
27 Carassale, L. and Solari, G. (2002), "Wind modes for structural dynamics: a continuous approach", Probabilist. Eng. Mech., 17(2), 157-166. https://doi.org/10.1016/s0266-8920(01)00036-4.   DOI
28 Chen, J.B., He, J.R., Ren, X.D. and Li, J. (2018), "Stochastic harmonic function representation of random fields for material properties of structures", J. Eng. Mech., 144(7), 04018049. https://doi.org/10.1061/(asce)em.1943-7889.0001469.   DOI
29 Chen, J.B., Kong, F. and Peng, Y.B. (2017), "A stochastic harmonic function representation for non-stationary stochastic processes", Mech. Syst. Signal Pr., 96, 31-44. https://doi.org/10.1016/j.ymssp.2017.03.048.   DOI
30 Chen, J.B., Sun, W.L., Li, J. and Xu, J. (2013), "Stochastic harmonic function representation of stochastic processes", J. Appl. Mech., 80(1), 011001. https://doi.org/10.1115/1.4006936.   DOI
31 Ghanem, R.G. and Spanos, P.D. (1991), "Spectral stochastic finite-element formulation for reliability analysis", J. Eng. Mech., 117(10), 2351-2372. https://doi.org/10.1061/(asce)0733-9399(1991)117:10(2351).   DOI
32 Chen, X.Z. and Kareem, A. (2005), "Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures", J. Eng. Mech., 131(4), 325-339.https://doi.org/10.1061/(asce)0733-9399(2005)131:4(325).   DOI
33 Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Q. J. Roy. Meteor. Soc., 87, 194-211. https://doi.org/10.1002/qj.49708737208.   DOI
34 Deodatis, G. and Shinozuka, M. (1989), "Simulation of seismic ground motion using stochastic waves", J. Eng. Mech., 115(12), 2723-2737.https://doi.org/10.1061/(asce)0733-9399(1989)115:12(2723).   DOI
35 Di Paola, M. (1998), "Digital simulation of wind field velocity", J. Wind Eng. Ind. Aerod., 74-76, 91-109. https://doi.org/10.1016/s0167-6105(98)00008-7.   DOI
36 Di Paola, M. and Gullo, I. (2001), "Digital generation of multivariate wind field processes", Probabilist. Eng. Mech., 16(1), 1-10. https://doi.org/10.1016/s0266-8920(99)00032-6.   DOI
37 Glasserman, P. (2013), Monte Carlo Methods in Financial Engineering, Springer, New York, NY, USA.
38 Huang, G.Q. (2015), "Application of proper orthogonal decomposition in fast Fourier transform-assisted multivariate nonstationary process simulation", J. Eng. Mech., 141(7), 04015015. https://doi.org/10.1061/(asce)em.1943-7889.0000923.   DOI
39 Huang, G.Q., Ji, X.W., Zheng, H.T., Luo, Y., Peng, X.Y. and Yang, Q.S. (2018), "Uncertainty of peak value of non-Gaussian wind load effect: analytical approach", J. Eng. Mech., 144(2), 04017172. https://doi.org/10.1061/(asce)em.1943-7889.0001402.   DOI