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LIMSUP RESULTS AND LIL FOR PARTIAL SUMS OF

RANDOM SEQUENCES

Chang-Ho Han, Hee-Jin Moon, and Yong-Kab Choi*

Abstract. In this paper we establish limsup results and a generalized

uniform law of the iterated logarithm (LIL) for the increments of par-

tial sums of strictly stationary and linearly positive quadrant dependent
(LPQD) or linearly negative quadrant dependent (LNQD) random se-

quences.

1. Introduction and Results

Let {Xk ; k = 1, 2, · · · } be a sequence of independent identically distributed

(i.i.d.) random variables, and let Sx =
∑[x]
k=1Xk and S0 = 0, where [x] denotes

the integer part of x ≥ 1. For a sequence {an; n = 1, 2, · · · } with 1 ≤ an ≤ n,
Csörgő and Révész [6] obtained the following strong limit law

lim
n→∞

max
0≤i≤n−an

max
1≤j≤an

Si+j − Si√
2an
(

log(n/an) + log log n
) = 1 a.s. (1.1)

under some conditions of {Xk} and {an}. The result (1.1) generalizes the well-
known “new law of large numbers” by Erdös and Rényi [11]. For further various
results on this limit law (1.1), we refer to [9, 10, 15]. Csörgő and Révész [7, 8]
also considered continuous random processes, for example, Wiener process in
place of the partial sum of i.i.d. random variables in (1.1).

On the other hand, Lin [18, 19] established several results related to (1.1) for
a sequence of independent or mixing dependent random variables. Theoreti-
cally and practically, strong dependent sequences are important and interesting.
Usually one considers the case of Gaussian sequences. Recently, Choi et al. [4]
investigated almost sure limit theorems for the maximum of partial sums of
stationary Gaussian sequences under dependent conditions. Besides, Csörgő et
al. [5] and Choi and Csörgő [2] studied path properties of l∞ and lp-valued
Gaussian random fields, respectively.
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In the last 50 years, there has been growing interest in concepts of positive or
negative dependence for families of random variables. Such concepts are used
in deriving inequalities in probability and statistics. In this paper, we are in-
terested in the asymptotic properties for a random sequence under dependence
assumptions.

For the aim of the present paper, we need to elaborate upon definitions
which will play a basic role in our work. For an integer d ≥ 1, let Rd and Rd+,
respectively, be d-dimensional and nonnegative d-dimensional Euclidean spaces
with the coordinatewise partial order ≤, where R is the set of real numbers. A
sequence {Xk ; k = 1, 2, · · · } of real-valued random variables on the probability
space (Ω,F, P ) is said to be centered if E(Xk) = 0.

Esary et al. [12] and Joag-Dev and Proschan [14] introduced definitions of
positive association and negative association, respectively: Let C be a set of
functions of the form f : Rn → R (n ≥ 1) which are coordinatewise nondecreas-
ing. A finite family {X1, · · · , Xn} of random variables is said to be positively
associated (PA, for short) if, for any f, g ∈ C and any subsets A and B of
{1, 2, · · · , n},

Cov(f(Xi; i ∈ A), g(Xj ; j ∈ B)) ≥ 0,

while {X1, · · · , Xn} is said to be negatively associated (NA, for short) if, for
any f, g ∈ C and any disjoint subsets A and B of {1, 2, · · · , n},

Cov(f(Xi; i ∈ A), g(Xj ; j ∈ B)) ≤ 0.

An infinite family is PA (resp. NA) if every finite subfamily is PA (resp. NA).
Newman [23] introduced and discussed the following another concepts of

positive or negative dependence. A sequence {Xk ; k = 1, 2, · · · } of random
variables is said to be linearly positive quadrant dependent (LPQD, for short)
if, for any positive numbers λi and any disjoint finite subsets A, B of Z+, the
following inequality

P

{∑
i∈A

λiXi ≥ x,
∑
j∈B

λjXj ≥ y
}
≥ P

{∑
i∈A

λiXi ≥ x
}
P

{∑
j∈B

λjXj ≥ y
}

(1.2)
holds for all x, y ∈ R, which is equivalent to the following inequality (Lehmann
[16], pp. 1137-1138)

P

{∑
i∈A

λiXi ≤ x,
∑
j∈B

λjXj ≤ y
}
≥ P

{∑
i∈A

λiXi ≤ x
}
P

{∑
j∈B

λjXj ≤ y
}
,

(1.3)
while {Xk ; k = 1, 2, · · · } is said to be linearly negative quadrant dependent
(LNQD, for short) if the inequalities in (1.2) and (1.3) are reversed. In general,
two random variables X and Y have been called positively (resp. negatively)
quadrant dependent (PQD) (resp. NQD) by Lehmann [16], if P

(
X ≥ x, Y ≥

y
)
≥ (resp. ≤)P

(
X ≥ x

)
P
(
Y ≥ y

)
for all x, y ∈ R.
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From the definitions, it is obvious that PA or NA implies LPQD or LNQD
(cf. [12, 14]), respectively, but the converse is not true (see e.g. Joag-Dev
[13], pp. 1038-1039). The positive or negative dependence plays an important
role in a wide variety of areas, including statistical mechanics, quantum field
theory, percolation models, multinomial distribution, permutation distribution,
reliability theory, mathematical physics and multivariate statistical analysis.

Since LPQD and LNQD are strictly weaker than PA and NA, respectively,
studying the limit theorems for LPQD and LNQD random sequences is of
interest. The following is not necessarily an exhaustive list of papers for LPQD
and LNQD random variables: [1], [23], [24], [26], [28].

Recently, Li and Wang [17] obtained the following law of the iterated log-
arithm (LIL) for an LPQD random sequence (cf. Theorem A below). Let
{Xk ; k = 1, 2, · · · } be a centered strictly stationary LPQD random sequence
with EX2

1 > 0, which satisfies conditions

(i) E|X1|p <∞ for p > 2,

(ii)
∑
j≥k+1

Cov(X1, Xj) = O(k−λ) for some λ > 2 and each k ≥ 1,

(iii) σ2 := EX2
1 + 2

∞∑
j=2

Cov(X1, Xj) <∞,

where uk = O(vk) denotes lim supk→∞ uk/vk <∞.

Theorem A (LIL). Let {Xk ; k = 1, 2, · · · } be a centered strictly station-
ary LPQD random sequence with EX2

1 > 0, which satisfies conditions (i)-(iii)
above. Then

lim sup
n→∞

Sn√
2σ2n log log n

= 1 a.s. (1.4)

In this paper, we establish some limsup results and a generalized uniform law
of the iterated logarithm for the increments of partial sums of a centered strictly
stationary LPQD (or LNQD) sequence of random variables, which extend and
generalize the inspiring result Theorem A.

Throughout the paper, let {Xk ; k = 1, 2, · · · } be a centered strictly station-
ary LPQD (or LNQD) sequence of random variables with E|X1|2+δ < ∞ for

some δ ∈ (0, 1]. Define a partial sum of the sequence {Xk} by Sx =
∑[x]
k=1Xk

and S0 = 0, where [x] denotes the integer part of x ≥ 1. Set

σ(x) :=
√
E (Si+x − Si)2 > 0, x > 0,

for all i ≥ 0, by stationarity. Assume that σ(x) is a nondecreasing and regularly
varying function with exponent α > 0 at ∞.

A positive function R(x) of x > 0 is said to be regularly varying with expo-
nent α > 0 at b ≥ 0 if limx→b{R(tx)/R(x)} = tα for t > 0. Recall that a func-
tion L(x) of x > 0 is said to be slowly varying at b ≥ 0 if limx→b{L(tx)/L(x)} =
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1 for t > 0. Thus the regularly varying function σ(x) can be written to
σ(x) = xαL(x).

Under the condition (iii) above, Yang and Wang [8] proved

lim
n→∞

σ2(n)

n
= σ2.

By this relation, we ensure that σ(n is approximately equal to σ
√
n for n large

enough, and that σ(·) is regarded as a regularly varying function with exponent
α = 1/2 at ∞. Furthermore, (1.4) can be written as

lim sup
n→∞

Sn

σ(n)
√

2 log log n
= 1 a.s. (1.5)

under conditions (i)-(iii).
Suppose that {an ; n ≥ 1} and {bn ; n ≥ 1} are positive nondecreasing

sequences such that an ≤ bn and bn →∞ as n→∞. Denote

β(n) =
√

2
{

log(bn/an) + log log bn
}
,

where log x := log(max{x, e}). The main results are as follows.

Theorem 1.1. Let {Xk ; k = 1, 2, · · · } be a centered strictly stationary LPQD
(LNQD) random sequence with E|X1|2+δ < ∞ for some δ ∈ (0, 1], which
satisfies conditions

(i)
∑

j≥k+1

|Cov(X1, Xj ) | = O(k−λ) for some λ > 2 and each k ≥ 1,

(ii) inf
x≥1

σ2(x)/x > 0.

Then we have

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)

√
2 log log bn

= lim sup
n→∞

Sbn
σ(bn)

√
2 log log bn

= 1 a.s.

(1.6)

The first result in (1.6) implies a generalized uniform law of the iterated
logarithm for LPQD or LNQD random sequences, but the second one in (1.6)
is a standard form of the ordinary LIL for LPQD or LNQD random sequences
which is an extension of (1.4) or (1.5) with bn = n. Since β(n) ≥

√
2 log log bn,

it is natural from (1.6) that

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)β(n)

≤ 1 a.s., (1.7)

but it is impossible by the second equality in (1.6) that the following inequality
holds:

lim sup
n→∞

Sbn
σ(bn)β(n)

≥ 1 a.s. (1.8)
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under the conditions in Theorem 1.1. Hence it is necessary to add the following
conditions (iii)-(iv) to Theorem 1.1 as in Theorem 1.2 below in order to obtain
(1.8).

Theorem 1.2. Let {Xk ; k = 1, 2, · · · } be a centered strictly stationary LPQD
(LNQD) random sequence with E|X1|2+δ < ∞ for some δ ∈ (0, 1], which
satisfies conditions (i)-(ii) in Theorem 1.1. Suppose that sequences {an ; n ≥ 1}
and {bn ; n ≥ 1} satisfy additional conditions

(iii) bn/an (> 1) is increasing,

(iv) there exists c0 > 1 such that bn ≤ c0bn−1 for n ≥ 2.

Then we have

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)β(n)

= lim sup
n→∞

Sbn
σ(bn)β(n)

= 1 a.s. (1.9)

Theorems 1.1 and 1.2 for LPQD or LNQD random sequences generalize the
superior limit results in [3], [4], [6], [21] and [22].

2. Proofs

In this section, let c denote a positive constant which may take different
values whenever it appears in different lines. We need the following properties.

(P1) Two random variables X and Y are PQD (resp. NQD) if and only if
Cov

(
f(X), g(Y )

)
≥ (resp. ≤) 0 for all real-valued nondecreasing functions f

and g (such that f(X) and g(Y ) have finite variances) (see Lehmann [16]);
(P2) (Hoeffding equality): For any absolutely continuous functions f and g

on the real line and for any random variables X and Y satisfying Ef2(X) +
Eg2(Y ) <∞, we have

Cov
(
f(X), g(Y )

)
=

∫ ∞
−∞

∫ ∞
−∞

f ′(x)g′(y)
{
P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)

}
dxdy.

The following propositions are essential to prove our main theorems. Note
that the condition (i) in Theorem 1.1 for strictly stationary LPQD (LNQD)
random sequences implies conditions (C2) and (I) in [17] and [26], respectively.
Thus Lemma 2 in [17] and Corollary 2.1 in [26] are easily changed to the
following Berry-Esseen type theorem for strictly stationary LPQD (LNQD)
random sequences in normal approximation under the assumptions of Theorem
1.1.

Proposition 2.1. (Berry-Esseen type theorem). Let {Xk ; k = 1, 2, · · · } be a
centered strictly stationary LPQD (LNQD) random sequence with E|X1|2+δ <
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∞ for some δ ∈ (0, 1], which satisfies conditions (i)-(ii) in Theorem 1.1. Then

sup
z

∣∣∣∣P { Sbn
σ(bn)

≤ z
}
− Φ(z)

∣∣∣∣ = O(b−1/5
n ), n→∞,

where Φ(·) is a standard normal distribution function and bn →∞ as n→∞.

Denote bk = bnk
for a nonnegative increasing sequence {nk}∞k=1. Using

Proposition 2.1 above, the following proposition is immediate from the proof
of Lemma 9 in Petrov [25, p. 311].

Proposition 2.2. Let {Xk} be as in Proposition 2.1. Assume that g(x) is a
positive nondecreasing function of x > 0 and {bk ; k ≥ 1} is a positive nonde-

creasing sequence such that
∑∞
k=1 b

−1/5
k < ∞. Then the following statements

are equivalent:

(A)

∞∑
k=1

P
{ Sbk
σ(bk)

> g(bk)
}
<∞, (B)

∞∑
k=1

P
{ |Sbk |
σ(bk)

> g(bk)
}
<∞,

(C)

∞∑
k=1

1

g(bk)
exp

(
− 1

2
g2(bk)

)
<∞.

The following proposition on the large deviation probability will be proved
in Section 3.

Proposition 2.3. Let {Xk ; k = 1, 2, · · · } be a centered strictly stationary
random sequence. Then, for any ε > 0 there exists a positive constant cε such
that, for u > 1,

P

{
sup

0≤i≤bn
sup

1≤j≤bn

|Si+j − Si|
σ(bn)

≥ u
}

≤ cε
(
P
{ |Sbn |
σ(bn)

≥ u

1 + ε

}
+
∞∑
n=1

22n+1

P
{ |Sbn |
σ(bn)

≥ u

1 + ε

√
1 + 2 log 3 · 2n/2

})
.

Proof of Theorem 1.1. Let us first prove

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)

√
2 log log bn

≤ 1 a.s. (2.1)

For any θ > 1, setAk =
{
n ; θk−1 ≤ bn ≤ θk

}
, k ≥ 1. Note that

√
2 log log θk−1 ≥

θ−1
√

2 log log θk since (log u)/u is decreasing for any u > ee. By the regularity
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of σ(·), we get σ(bn)/σ(θk) ≥ θ−2α as k →∞ and hence

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)

√
2 log log bn

≤ lim sup
k→∞

sup
n∈Ak

sup
0≤i≤bn

sup
1≤j≤bn

|Si+j − Si|
σ(bn)

√
2 log log θk−1

≤ θ2α+1 lim sup
k→∞

sup
0≤i≤θk

sup
1≤j≤θk

|Si+j − Si|
σ(θk)

√
2 log log θk

.

(2.2)

Let us apply Proposition 2.3 with bk = θk, where bk := bnk
for an increasing

subsequence {nk}∞k=1 of {n ; n ≥ 1}. Then, for any ε > 0, there exists a
constant cε > 0 such that

P

{
sup

0≤i≤θk
sup

1≤j≤θk

|Si+j − Si|
σ(θk)

√
2 log log θk

> 1 + 2ε

}
≤ cε

(
P

{
|Sθk |
σ(θk)

>
1 + 2ε

1 + ε

√
2 log log θk

}
+

∞∑
n=1

22n+1

P

{
|Sθk |
σ(θk)

>
(1 + 2ε)

√
2 log log θk

1 + ε

√
1 + 2 log 3 · 2n/2

}) (2.3)

for k large enough. Now, let us apply Proposition 2.2 with bk = θk and g(θk) =
g1(θk)

(
or g2(θk)

)
, where

g1(θk) :=
(1 + 2ε)

√
2 log log θk

1 + ε
,

g2(θk) :=
(1 + 2ε)

√
2 log log θk

1 + ε

√
1 + 2 log 3 · 2n/2.

Considering the first term of the right hand side of (2.3) and (C) of Proposition
2.2, we have

∞∑
k=1

1

g1(θk)
exp

(
− 1

2
g2

1(θk)
)
≤ c

∞∑
k=1

exp
(
− 1

2

(1 + 2ε

1 + ε

)2

2 log log θk
)

≤ c
∞∑
k=1

(
log θk

)−1−ε′
<∞,

where ε′ = ε/(1 + ε), and hence Proposition 2.2 yields

∞∑
k=1

P

{
|Sθk |
σ(θk)

> g1(θk)

}
<∞. (2.4)

Next, consider the second term of the right hand side of (2.3). By the equiv-
alence relation of (B) and (C) in Proposition 2.2 with g(θk) = g2(θk), it is
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obvious that
∞∑
k=1

1

g2(θk)
exp

(
− 1

2
g2

2(θk)
)
<∞

=⇒
∞∑
k=1

P

{
|Sθk |
σ(θk)

> g2(θk)

}
<∞.

(2.5)

By the way, we have

1

g2(θk)
exp

(
− 1

2
g2

2(θk)
)

≤ exp
(
− 1

2

(1 + 2ε

1 + ε

)2

(2 log log θk)(1 + 2 log 3)2n
)

≤ (k log θ)−(1+ε′)(1+2 log 3)2n

≤ c k−(1+ε′)(1+2 log 3)2n

for some constant c > 0, and hence the implication of (2.5) gives

P

{
|Sθk |
σ(θk)

> g2(θk)

}
≤ c k−(1+ε′)(1+2 log 3)2n

.

Therefore, we obtain
∞∑
k=1

∞∑
n=1

22n+1

P

{
|Sθk |
σ(θk)

> g2(θk)

}

≤ c
∞∑
k=1

∞∑
n=1

22n+1

k−(1+ε′)(1+2 log 3)2n

= c

∞∑
k=1

∞∑
n=1

22n+1

· 2−(log2 k)(1+ε′)2n

· 2−(log2 k)(1+ε′)2n+1 log 3

≤ c
∞∑
k=1

∞∑
n=1

22n+1
(

1−(log2 k)(1+ε′) log 3
)
· 2−(log2 k)2n

≤ c
∞∑
k=1

∞∑
n=1

2−2(1+ε′) log2 k · 2−n ≤ c
∞∑
k=1

∞∑
n=1

k−2 · 2−n <∞.

(2.6)

It follows from (2.3), (2.4) and (2.6) that

∞∑
k=1

P

{
sup

0≤i≤θk
sup

1≤j≤θk

|Si+j − Si|
σ(θk)

√
2 log log θk

> 1 + 2ε

}
<∞

and the Borel-Cantelli lemma yields

lim sup
k→∞

sup
0≤i≤θk

sup
1≤j≤θk

|Si+j − Si|
σ(θk)

√
2 log log θk

≤ 1 + 2ε a.s.

This and (2.2) together imply (2.1) since θ and ε are arbitrary.
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By virtue of (2.1), the proof of (1.6) is completed if we show that

lim sup
k→∞

Sbk
σ(bk)

√
2 log log bk

> 1− 4ε a.s. (2.7)

for any small ε > 0, where bk := bnk
for an increasing subsequence {nk}∞k=1 of

{n ; n ≥ 1}. Let

Bk =

{
Sbk − Sbk/2

σ(bk − bk/2)
> (1− 2ε)

√
2 log log (bk − bk/2)

}
.

Note that

Zk :=
Sbk − Sbk/2

σ(bk − bk/2)

is a standardized random variable. For θ > 1, let bk = θk. Then bk − bk/2
is approximately equal to θk for sufficiently large k. To apply Proposition 2.2
with bk− bk/2, we set g(bk− bk/2) = (1− 2ε)

√
2 log log (bk − bk/2) in Bk. Then

∞∑
k=1

1

g
(
bk − bk/2

) exp
(
− 1

2
g2
(
bk − bk/2

))
≥ c

∞∑
k=1

exp
(
−(1− ε) log log θk

)
≥ c

∞∑
k=1

k−1+ε =∞.

Hence, Proposition 2.2 implies
∞∑
k=1

P (Bk) =∞. (2.8)

Next, let

B′k =
{
Zk > (1− 3ε)

√
2 log log (bk − bk/2)

}
.

We will show that
P
(
B′k, i.o.

)
= 1. (2.9)

Choose a differential function f(x) on R such that |f ′(x)| ≤ κ for some 0 <
κ <∞ and

0 ≤ I
{
x > (1− 2ε)

√
2 log log (bk − bk/2)

}
≤ f(x) ≤ I

{
x > (1− 3ε)

√
2 log log (bk − bk/2)

}
≤ 1,

(2.10)

where I(·) is an indicator function. In order to prove (2.9), it is enough to show
that

∞∑
k=1

f(Zk) =∞ a.s. (2.11)

From (2.8) and (2.10), we get
∞∑
k=1

Ef(Zk) ≥
∞∑
k=1

P (Bk) =∞. (2.12)
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By Markov’s inequality, we have

P

{ ∞∑
k=1

f(Zk) <
1

2

n∑
k=1

Ef(Zk)

}

≤ P

{∣∣∣∣∣
n∑
k=1

f(Zk)−
n∑
k=1

Ef(Zk)

∣∣∣∣∣ > 1

2

n∑
k=1

Ef(Zk)

}

≤ 4 Var

(
n∑
k=1

f(Zk)

)/(
n∑
k=1

Ef(Zk)

)2

≤ 4∑n
k=1Ef(Zk)

+
8
∑∞
k=1

∑∞
j=k+1 |Cov

(
f(Zk), f(Zj)

)
|(∑n

k=1Ef(Zk)
)2 .

(2.13)

Noting that Zk and Zj are LPQD (resp. LNQD) from the definition of LPQD
(resp. LNQD), it follows from (i), (P1), (P2) and the regularity of σ(·) that

∞∑
k=1

∞∑
j=k+1

∣∣Cov
(
f(Zk), f(Zj)

) ∣∣
≤
∞∑
k=1

∞∑
j=k+1

∫ ∞
−∞

∫ ∞
−∞
|f ′(x)| |f ′(y)|

∣∣P{Zk ≥ x, Zj ≥ y}
− P{Zk ≥ x}P{Zj ≥ y}

∣∣dxdy
≤ κ2

∞∑
k=1

∞∑
j=k+1

∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

(
P{Zk ≥ x, Zj ≥ y}

− P{Zk ≥ x}P{Zj ≥ y}
)
dxdy

∣∣∣
= κ2

∞∑
k=1

∞∑
j=k+1

∣∣Cov(Zk, Zj)
∣∣

≤ c
∞∑
k=1

1

σ2(bk − bk/2)

∞∑
j=k+1

∣∣Cov
(
Sbk − Sbk/2

, Sbj − Sbj/2
)∣∣

≤ c
∞∑
k=1

bk − bk/2
σ2(bk − bk/2)

∑
j≥k+1

∣∣Cov
(
X1, Sbj − Sbj/2

)∣∣
≤ c

∞∑
k=1

θk(1−2α)bk+1

∑
bj≥bk+1

∣∣Cov
(
X1, Xbj

)∣∣
≤ c

∞∑
k=1

θk(1−2α)θk+1b−λk ≤ c
∞∑
k=1

θk(1−2α)θkθ−λk

= c

∞∑
k=1

θ−(λ−2+2α)k <∞

(2.14)
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for α > 0 and λ > 2. Combining (2.12)-(2.14) and letting n→∞ yields

P

{ ∞∑
k=1

f(Zk) <∞

}
= 0.

This proves (2.11) and consequently (2.9). Let

Ck =

{
Sbk/2

σ(bk/2)
≥ −2

√
2 log log bk/2

}
.

It follows from (2.1) and (2.9) that P (B′k ∩Ck, i.o.) = 1. It is easy to see that

P
{ Sbk
σ(bk)

> (1− 4ε)
√

2 log log bk, i.o.
}

≥ P
{ Sbk
σ(bk)

> (1− 3ε)
√

2 log log (bk − bk/2)− 2
√

2 log log bk/2, i.o.
}

≥ P
{
B′k ∩ Ck, i.o.

}
= 1

for k large enough. This implies (2.7) and completes the proof of Theorem 1.1.

To prove Theorem 1.2, we need the following lemma which is a well-known
version of the second Borel-Cantelli lemma.

Lemma 2.4. Let {Ak ; k ≥ 1} be any sequence of events in a probability space
(Ω,F, P ). If

(a)
∑∞
k=1 P (Ak) =∞ and

(b) lim infn→∞
∑

1≤j<k≤n
P (Aj∩Ak)−P (Aj)P (Ak)(∑n

j=1 P (Aj)
)2 ≤ 0,

then P (lim supk→∞ Ak) = 1.

Proof of Theorem 1.2. Let {nk}∞k=1 be a nonnegative increasing sequence such
that n0 ≥ 0, limk→∞ nk = ∞ and the (k − 1)st point nk−1 is placed by the
relation

bnk
− ank

= bnk−1

with nk (k = 1, 2, · · · ) defined by induction, where limk→∞ bnk
= ∞ by as-

sumption. This can be done by the fact that bnk
− ank

is increasing since
bnk

/ank
(> 1) is increasing by (iii). For convenience, put ak = ank

and bk = bnk
,

and set

Uk =
Sbk
σ(bk)

.

By virtue of (1.7), the proof of (1.9) is completed if we show that

lim sup
k→∞

Uk
β(nk)

>
√

1− 4ε a.s. (2.15)
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for any small ε > 0, where β(nk) :=
√

2 log
(
(bk/ak) log bk

)
. Set

Ak =
{
Uk >

√
1− 4ε β(nk)

}
.

Let us first prove that
∑∞
k=1 P (Ak) =∞ in Lemma 2.1. Put

Bk =
{
Uk >

√
1− 2ε β(nk)

}
.

If N is a standard normal random variable, then it is well known that, for all
large x > 0,

1√
2πx2

e−x
2/2 ≤ P{N > x} ≤ 1√

2πx
e−x

2/2.

Thus it follows from Proposition 2.1 and the stationarity of {Xk} that, for all
large k,

P (Bk) =
(

1− P
{ Sbk
σ(bk)

≤
√

1− 2ε β(nk)
}
− 1 + P{N ≤

√
1− 2ε β(nk)}

)
+ P{N >

√
1− 2ε β(nk)}

≥ −c1 b−1/5
k + P{N >

√
1− 2ε β(nk)}

≥ −c1 b−1/5
k +

1√
2π(1− 2ε)β2(nk)

exp
(
− 1− 2ε

2
β2(nk)

)
≥ −c1 b−1/5

k + c

(
ak

bk log bk

)1−ε

≥ −c1
1

(log bk)1−ε + c

(
ak

bk log bk

)1−ε

≥ c 1

(log bk)1−ε

(
ε
ak
bk

)
,

where c and c1 are positive constants, and further

m∑
k=k0

P (Bk) ≥ ε 1

(log bm)1−ε

m∑
k=k0

ak
bk

for some k0 ≥ 1 with k0 ≤ k ≤ m. Also, by (iv), there exist constants c0, c2 > 1
such that c0 bk−1 ≥ bk − ak and

log bm ≤ c2
m∑

k=k0

log
bk
bk−1

≤ c2
m∑

k=k0

log

(
c0 +

ak
bk−1

)

≤ c2
m∑

k=k0

log

(
c0 +

c3 ak−1

bk−1

) (2.16)
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for sufficiently large c3 > 1. The last inequality of (2.16) follows from the fact
that there is c3 > 1 big enough such that

ak
ak−1

≤ bk
bk−1

≤ c0 bk
bk − ak

=
c0

1− (ak/bk)
≤ c3

by (iii). It follows from (2.16) that there exists a constant K > 1 such that

log bm ≤ c2
m∑

k=k0

log
(
c0 +

c3 ak
bk−1

)
≤ K

m∑
k=k0

c3
2ak
bk

.

Therefore, we have
m∑
k=1

P (Bk) ≥ ε

Kc32
(log bm)ε →∞ as m→∞

that is,
∞∑
k=1

P (Bk) =∞. (2.17)

This implies
∑∞
k=1 P (Ak) = ∞ and hence the condition (a) of Lemma 2.1 is

satisfied.
Next, let us prove that condition (b) of Lemma 2.1 holds when {Xk} is

an LNQD random sequence. By the definition of {nk}∞k=1, two sets A :=
{j′ ; aj + 1 ≤ j′ ≤ aj + bj} and B := {k′ ; bk + 1 ≤ k′ ≤ 2bk} for j < k, are
disjoint. If we put

λj =
1

σ(bj)β(nj)
and λk =

1

σ(bk)β(nk)
,

then it follows from the stationarity of {Xk} that

P (Aj ∩ Ak)

= P

{
Xaj+1 + · · ·+Xaj+bj

σ(bj)β(nj)
>
√

1− 4ε,
Xbk+1 + · · ·+X2bk

σ(bk)β(nk)
>
√

1− 4ε

}
= P

{ ∑
j′∈A

λjXj′ >
√

1− 4ε,
∑
k′∈B

λkXk′ >
√

1− 4ε

}

≤ P
{ ∑
j′∈A

λjXj′ >
√

1− 4ε

}
P

{ ∑
k′∈B

λkXk′ >
√

1− 4ε

}

= P

{
Xaj+1 + · · ·+Xaj+bj

σ(bj)β(nj)
>
√

1− 4ε

}
P

{
Xbk+1 + · · ·+X2bk

σ(bk)β(nk)
>
√

1− 4ε

}
= P

{
X1 + · · ·+Xbj

σ(bj)β(nj)
>
√

1− 4ε

}
P

{
X1 + · · ·+Xbk

σ(bk)β(nk)
>
√

1− 4ε

}
= P (Aj)P (Ak).

This inequality yields that condition (b) of Lemma 2.1 is satisfied and hence
(2.15) holds true by Lemma 2.1.
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On the other hand, assume that {Xk ; k = 1, 2, · · · } is a centered strictly
stationary LPQD random sequence with conditions (i)-(ii). Set

A′k =
{
Uk >

√
1− 3ε β(nk)

}
.

We will show that

P
(
A′k, i.o.

)
= 1. (2.18)

Choose a differential function f(x) on R such that |f ′(x)| ≤ κ for some 0 <
κ <∞ and

0 ≤ I
{
x >
√

1− 2ε β(nk)
}
≤ f(x) ≤ I

{
x >
√

1− 3ε β(nk)
}
≤ 1. (2.19)

In order to prove (2.18), it is enough to show that

∞∑
k=1

f(Uk) =∞ a.s. (2.20)

From (2.17) and (2.19), we get

∞∑
k=1

Ef(Uk) ≥
∞∑
k=1

P (Bk) =∞. (2.21)

By Markov’s inequality, we have

P

{ ∞∑
k=1

f(Uk) <
1

2

n∑
k=1

Ef(Uk)

}

≤ P

{∣∣∣∣∣
n∑
k=1

f(Uk)−
n∑
k=1

Ef(Uk)

∣∣∣∣∣ > 1

2

n∑
k=1

Ef(Uk)

}

≤ 4 Var

(
n∑
k=1

f(Uk)

)/(
n∑
k=1

Ef(Uk)

)2

≤ 4∑n
k=1Ef(Uk)

+
8
∑∞
k=1

∑∞
j=k+1 |Cov

(
f(Uk), f(Uj)

)
|(∑n

k=1Ef(Uk)
)2 .

(2.22)

For θ > 1, let bk = θk, k ≥ 1. Noting that Uk and Uj are LPQD from the
definition of LPQD, it follows from (i), (P1), (P2) and the regularity of σ(·)
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that

∞∑
k=1

∞∑
j=k+1

∣∣Cov
(
f(Uk), f(Uj)

) ∣∣
≤
∞∑
k=1

∞∑
j=k+1

∫ ∞
−∞

∫ ∞
−∞
|f ′(x)| |f ′(y)|

(
P{Uk ≥ x, Uj ≥ y}

− P{Uk ≥ x}P{Uj ≥ y}
)
dxdy

≤ κ2
∞∑
k=1

∞∑
j=k+1

Cov(Uk, Uj) ≤ c
∞∑
k=1

1

σ2(bk)

∞∑
j=k+1

Cov
(
Sbk , Sbj

)
≤ c

∞∑
k=1

bk
σ2(bk)

∞∑
j=k+1

Cov
(
X1, Sbj

)
≤ c

∞∑
k=1

θk(1−2α)bk+1

∑
bj≥bk+1

Cov
(
X1, Xbj

)
≤ c

∞∑
k=1

θk(1−2α)θk+1b−λk ≤ c
∞∑
k=1

θk(1−2α)θkθ−λk

= c

∞∑
k=1

θ−
(
λ−2+2α

)
k <∞

(2.23)

for α > 0 and λ > 2. Combining (2.21)-(2.23) and letting n→∞ yields

P

{ ∞∑
k=1

f(Uk) <∞

}
= 0.

This proves (2.20) and consequently (2.18). Let

A′′k =

{
Sbk/2

σ(bk/2)
≥ −2β(nk/2)

}
.

It follows from (1.7) and (2.18) that P (A′k ∩ A′′k , i.o.) = 1. By the stationarity
of {Xk}, it is obvious that

P
{ Uk
β(nk)

>
√

1− 4ε, i.o.
}

= P
{ Sbk
σ(bk)

>
√

1− 4ε β(nk), i.o.
}

≥ P
{ Sbk
σ(bk)

>
√

1− 3ε β(nk)− 2β(nk/2), i.o.
}
≥ P

{
A′k ∩ A′′k , i.o.

}
= 1

for k large enough. This implies (2.15) and completes the proof of Theorem
1.2.
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3. Appendix: Proof of Proposition 2.3

First we prove an auxiliary result for strictly stationary random field to get
Proposition 2.3.

Lemma 3.1. Let D be a compact subset of Rd+ and let {Xt; t := (t1, · · · , td) ∈
D} be a separable and centered strictly stationary random field with d-dimensional
indices. For any u < v in D, denote by X(u,v] a random field generated by
{Xt; t ∈ D} on d-cube (u,v] ⊂ D such that

0 < Γ := sup
u,v∈D

√
E{X(u,v]}2 <∞ and

√
E{X(u,v]}2 ≤ ϕ(|||v − u|||),

where we denote |||p ||| = p1 · · · pd for p := (p1, · · · , pd) ∈ Rd+ and ϕ(h) is a
nondecreasing continuous function of h > 0. Then, for any λ > 0 and K1 >
(2
√

2 + 2)
√

1 + d log 3, there exists a constant c > 0 such that

P

{
sup

u,v∈D
|X(u,v] | ≥ x

(
Γ +K1

∫ ∞
0

ϕ(λd/2 2−dy
2/2) dy

)}
≤ c m(D)

λd

(
P
{ |X(0,v] |√

E{X(0,v]}2
≥ x

}
+

∞∑
n=1

2d2n

P
{ |X(0,v] |√

E{X(0,v]}2
≥ x

√
1 + d log 3 · 2n/2

}) (3.1)

for x ≥ 1, where m(D) denotes the Lebesgue measure of D.

Proof. For each n = 0, 1, 2, · · · , put εn = λ2−2n

, λ > 0. Denote a diameter of

any subset A of D by ρ(A). Let {T (n)
i ; i = 1, 2, · · · , Nεn(D)} be a minimal εn-

net of D, where Nεn(D) = min
{
k;D ⊂ ∪ki=1T

(n)
i , ρ(T

(n)
i ) ≤ εn

}
. Then there is

a positive constant c such that Nεn(D) ≤ c m(D)
εdn

. Set ∆n = ∪Nεn (D)
i=1

{
t
(n)
i

}
for

all t
(n)
i ∈ T (n)

i . Let K2 >
√

1 + d log 3 and K1 = (2
√

2 + 2)K2. For x ≥ 1, set

xk = xK2ϕ(ε
d/2
k−1)2k/2, k ≥ 1.

Letting δk = 2(k−1)/2 for k ≥ 0, it is clear that

2k/2 = (2
√

2 + 2)(δk − δk−1).

Thus we have
∞∑
k=1

xk = xK1

∞∑
k=1

ϕ(λd/2 2−dδ
2
k/2)(δk − δk−1)

≤ xK1

∞∑
k=1

∫ δk

δk−1

ϕ(λd/2 2−dy
2/2)dy

≤ xK1

∫ ∞
0

ϕ(λd/2 2−dy
2/2)dy.
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Therefore, we conclude

P

{
sup

u,v∈D
|X(u,v] | ≥ x

(
Γ +K1

∫ ∞
0

ϕ
(
λd/2 2−dy

2/2
)
dy

)}
≤ P

{
sup

u,v∈D
|X(u,v] | ≥ xΓ +

∞∑
k=1

xk

}

≤ lim
n→∞

P

{
sup

u,v∈∆n

|X(u,v] | ≥ xΓ +

n∑
k=1

xk

}
.

Let

B0 =

{
sup

u,v∈∆0

|X(u,v] | ≥ xΓ

}
and

Bn =

{
sup

u,v∈∆n

|X(u,v] | ≥ xΓ +

n∑
k=1

xk

}
, n ≥ 1.

By induction, we have

P (Bn) = P (Bn ∩Bn−1) + P (Bn ∩Bcn−1) ≤ P (B0) +

∞∑
n=1

P (Bn ∩Bcn−1).

By the way, for each n ≥ 1, we have

P (Bn ∩Bcn−1)

≤ P

{ ⋃
u,v∈∆n

{
2 |X(u,v] | ≥ xΓ +

n∑
k=1

xk

}

∩
⋂

u,v∈∆n−1

{
|X(u,v] | < xΓ +

n−1∑
k=1

xk

}}

≤ P

{ ⋃
v∈∆n

⋃
u∈∆n−1

|||v−u|||≤εdn−1

{
|X(u,v] | ≥ xn

}}

≤
∑

v∈∆n

∑
u∈∆n−1

|||v−u|||≤εd/2n−1

P
{
|X(u,v] | ≥ xn

}

≤ c m(D)

εdn
P

{
|X(u,v] |√
E{X(u,v]}2

≥ xn
ϕ(|||v − u|||)

}

≤ c m(D)

εdn
P

{
|X(u,v] |√
E{X(u,v]}2

≥ xK22n/2

}
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≤ c m(D)

λd
2d2n

P
{ |X(u,v] |√

E{X(u,v]}2
≥ x

√
1 + d log 3 · 2n/2

}
≤ c m(D)

λd
2d2n

P
{ |X(0,v] |√

E{X(0,v]}2
≥ x

√
1 + d log 3 · 2n/2

}
and

∞∑
n=1

P
(
Bn ∩Bcn−1

)
≤ c m(D)

λd

∞∑
n=1

2d2n

P
{ |X(0,v] |√

E{X(0,v]}2
≥ x

√
1 + d log 3 · 2n/2

}
,

where c > 0 is a constant. On the other hand, we have

P (B0) ≤ c m(D)

εd0
P {|X(u,v] | ≥ xΓ}

≤ c m(D)

λd
P
{ |X(u,v] |√

E{X(u,v]}2
≥ x

}
≤ c m(D)

λd
P
{ |X(0,v] |√

E{X(0,v]}2
≥ x

}
.

This completes the proof of Lemma 3.1. �

Proof of Proposition 2.3. For given bn (n ≥ 1), we set Dn = {(i, j) ∈
Z2

+ ; 0 ≤ i ≤ bn 1 ≤ j ≤ bn}. To apply Lemma 3.1, put

X(i, i+ j ] =
Si+j − Si
σ(bn)

and ϕ(z) =
σ(z)

σ(bn)
for z > 0,

where σ(bn) :=
√
E{Sbn}2. It is clear that

E{X(i, i+ j ]} = 0,
√
E{X(i, i+ j ]}2 =

σ(j)

σ(bn)
= ϕ(j)

and Γ = sup
(i,j)∈Dn

√
E{X(i, i+ j ]}2 = 1.

Since σ(·) is a nondecreasing continuous and regularly varying function with
exponent α > 0 at ∞, it follows that, for any ε > 0, there exists a constant
Cε > 0 such that

K1

∫ ∞
0

ϕ(Cεbn2−y
2

) dy = K1

∫ ∞
0

σ(Cεbn2−y
2

)

σ(bn)
dy

≤ K1

∫ ∞
0

(Cε 2−y
2

)α dy < ε,
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where K1 > (2
√

2 + 2)
√

1 + 2 log 3 and we take λ = Cεbn in Lemma 3.1. Set
u = x

(
1 + ε

)
for x ≥ 1. Then, by (3.1) and the stationarity of {Xk}, we have

P

{
sup

0≤i≤bn
sup

1≤j≤bn

|Si+j − Si|
σ(bn)

≥ u
}

= P

{
sup

(i,j)∈Dn

|X(i, i+ j ] | ≥ u
}

≤ P

{
sup

(i,j)∈Dn

|X(i, i+ j ] | ≥ x
(

1 +K1

∫ ∞
0

ϕ(Cεbn 2−y
2

) dy

)}

≤ c b2n
(Cε bn)2

(
P

{
|X(0, bn] |√
E{X(0, bn]}2

≥ x
}

+

∞∑
n=1

22n+1

P

{
|X(0, bn] |√
E{X(0, bn]}2

≥ x
√

1 + 2 log 3 · 2n/2
})

≤ cε
(
P

{
|Sbn |
σ(bn)

≥ u

1 + ε

}
+

∞∑
n=1

22n+1

P

{
|Sbn |
σ(bn)

≥ u

1 + ε

√
1 + 2 log 3 · 2n/2

})
,

where cε is a positive constant depending only on ε > 0. This completes the
proof.
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