• Title/Summary/Keyword: state trajectory

Search Result 281, Processing Time 0.027 seconds

A Study on the Position Control Improvement of Flexible Robot Arm by Inverse Dynamics (역학을 이용한 탄성 로보트 아암의 선단 위치 제어 기어에 대한 연구)

  • 방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.9-13
    • /
    • 1997
  • This parer is a study on the inverse dynamics of a one-link flexible robot arm which is controlled by translational base motion. The system is composed of a flexible arm, a base for driving arm, a DC servomotor, and a computer. The arm base is moved so that the arm tip follows a desired function. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method. Moter voltage is obtained by simulation for tip trajectory functions i. e. Bang-Bang, Cosine and Gauss Function. And, the tip motion is measured while simulation results are applying. Then the results are investigated to select most proper input and to compare their chateristics. Experimental results show the Cosine function is most proper with respect to low maximum voltage and steady state error.

  • PDF

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model (압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션)

  • 최병철;전계록
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

A Study on Position Servo Drive with Sliding Mode Control (슬라이딩 모우드를 이용한 위치 서보 운전에 관한 연구)

  • Won, Jong-Soo;Min, Choon-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.65-68
    • /
    • 1988
  • In this paper the application of variable structure control with sliding modes for improving the dynamic response and eliminating chattering of DC servo motor drive is presented. Sliding mode control is an effective means to keep a system insensitive to parameter variation and disturbances. In this method the control structure is changed discontinuously to farce the system dynamic to follow a predetermined trajectory. However the discontinuous change in control structure causes the controller input to chatter and gives non-zero steady state error. To overcome this problem, the discontinuous sign function is replaced by a proper continuous function, and presented through experiment.

  • PDF

A Design of Fuzzy-Cross Coupling Controller for AGV (AGV용 퍼지 상호 결합 제어기 설계)

  • Jeong, Kab-Kyun;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.522-524
    • /
    • 1998
  • In this paper, the cross-coupling controller with fuzzy logic for AGV is developed, Cross-coupling control directly minimizes orientation' error by coordinating the motion of the two drive wheels and uses PI controller for compensation. But, the transient response of PI controller results in deviation from trajectory. The Fuzzy Cross-coupling controller enhances transient performance without steady-state error. The performance of the above controller is demonstrated by simulation and is compared with that of PI controller.

  • PDF

EOTS Position Control Using Constant Acceleration and Deceleration Profile (등가감속 프로파일을 이용한 EOTS 위치제어)

  • Yim, Jong-Bin;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Electro Otical Tracking System(EOTS) is required for a rapid movement as well as the stabilization of Line-Of-Sight(LOS). In order to achieve these two goals, this paper presents a position and velocity driving profile generation method from the constant acceleration and deceleration profile according to the current state, enabling a fast and smooth trajectory even if the target position changes during the movement of LOS. Simulation and experimental results reveal that the settling time could be reduced significantly by adopting the present position control scheme.

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF

Robust Tracking Control of Nonholonomic Systems (비홀로노믹 시스템을 위한 견실 추종 제어)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • A robust tracking control for nonholonomic dynamic systems is proposed in this paper. Since nonholonomic dynamic systems have constraints imposed on motions that are not integrable, i.e., the constraints cannot be written as time derivatives of some functions of generalized coordinates, advanced techniques are needed for their control. It is shown that if the state of nonholonomic systems is mapped into a bounded space by a coordinate transformation, a robust controller for dynamic models of nonholonomic systems with input disturbances can be designed using sliding mode control. Stability and robustness of the proposed controller are proved in the Lyapunov sense. Numerical simulations on the trajectory tracking of a two-wheeled mobile robot are conducted to validate the effectiveness of the proposed controller.

Control Lyapunov Function Design by Cancelling Input Singularity

  • Yeom, Dong-Hae;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • If one can find a control Lyapunov function (CLF) for a given nonlinear system, the control input stabilizing the system can be easily obtained. To find a CLF, the time derivative of an energy function should be negative definite. This procedure frequently requires a control input which is a rational function or includes an inverse function. The control input is not defined on the specific state-space where the denominator of the rational function is equal to 0 or the inverse function does not exist. In this region with singularities, the trajectory of the control system cannot be generated, which is one of the most important reasons why it is hard to make the origin of a nonlinear system be globally asymptotically stable. In this paper, we propose a smooth control law ensuring the globally asymptotic stability by means of cancelling the singularity in the control input.

A Robust Adaptive Friction Control of Robot Manipulators using Sliding Surface (슬라이딩 표면을 이용한 로봇 매니퓰레이터의 강건한 적응 마찰 제어)

  • Bae, Jun-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2139-2146
    • /
    • 2011
  • In this paper, a robust adaptive controller is proposed for trajectory tracking of robot manipulators with the unknown friction coefficient and bounded disturbance. A new adaptive control law is developed based on sliding mode and derived from the Lyapunov stability analysis. The introduction of a boundary layer solves the problem of chattering. The proposed adaptive controller is globally asymptotically stable and guarantees zero steady state error for joint positions. The estimated friction coefficients can also approach the actual coefficients asymptotically. A simulation example is provided to demonstrate the performance of the proposed algorithm.

A Study on A Microprocessor-Based Incremental Servo System with Variable Structure. (마이크로 프로세서를 이용한 가변구조를 갖는 서어보 시스템에 관한 연구)

  • Lee, Sang-Bum;Kim, Su-Il;Hong, Kun-Hwan;Choi, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.301-303
    • /
    • 1987
  • A microprocessor-based incremental servo system with a variable structure is presented. New system properties are obtained by composing a desired trajectory from the parts of trajectories of different structures. It is implemented with Z-80A microprocessor to control a dc motor, and fast response without overshoot and good steady-state accuracy can be easily obtained.

  • PDF